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Introduction

In essence, spectral sequences are computational tools used to compute (co)homology groups by taking successive
approximations. They contain a lot of information in such a compact definition that at first, spectral sequences
may seem too complicated to be of any use, but this could not be farther from the truth.

Spectral sequences were first introduced by Jean Leray in 1946 while captive in Austria during World War II.
His mathematical upbringing was in analysis and differential equations (his phd thesis was on the Navier-Stokes
equation), but switched to “pure mathematics” to avoid being enlisted by the germans to help in their war
machine. However, Leray did not stray too far from his origins. His work on spectral sequences was motivated
by trying to generalize/axiomatize Cartan’s and de Rham’s theory of differential forms to topological spaces.
In a series of two terse notes in 1946, Leray introduced the definition of sheaves and spectral sequences. These
papers are somewhat opaque and the modern definitions of these objects are quite different.

The modern notion of sheaf is due to Cartan who was himself motivated by André Weil’s modern proof of de
Rham’s theorem. Though Weil himself does not mention Leray when discussing the inspiration for this proof,
in a 1947 letter to Cartan, it is very likely that he discussed this problem personally with Leray in the previous
year.

The modern notion of spectral sequence is due to Koszul in 1947-1948, a student of Cartan, who “liberated
the notion of spectral sequence from its topological confinement, and brought the thoery to its present-day
form” [Mil00]. Most of the modern notation used in the theory of spectral sequences is due to Koszul.

It is not clear why the word “spectral” was chosen by Leray. During the late 40’s, people had been referring
to spectral sequences as the Leray-Koszul sequence, but, according to Borel, Leray wanted terminology without
proper names and “sequence of graded differential algebras” was too long. Borel then speculates that, since
Leray’s definition of filtration allowed them to be parametrized by real numbers, spectral sequences, to Leray,
felt formally reminiscent of “things labeled spectral” in Analysis.

The theory of spectral sequences in the late 40’s wasn’t very well accepted by the mathematical community
since Leray’s original notes were hard to understand and included no applications or theorems. This changed
however, when in 1950 a paper of Borel and Serre applied Leray’s theory to show that Euclidean space cannot
admit a proper fibration by connected fibers over a compact base space. More precisely, there does not exist a
continuous map p : Rn → B, where B is compact, p−1(b) ⊂ Rn is connected and such that p is a fibration, i.e.
it satisfies the homotopy lifting property: for every topological space X and every homotopy h : X × [0, 1] → B

there exists a lift ĥ : X × [0, 1] → Rn that preserve any choice of map h0 : X → Rn and makes the following
diagram commute:

X × {0} Rn

X × [0, 1] B

h0

p

h

ĥ

If you restrict the above definition to X’s that are CW-complexes, then p is called a Serre fibration.
The final result result that turned the theory of spectral sequences into its modern form is Serre’s PhD

thesis where, among other things, he constructs a spectral sequence that computes the singular (co)homology
of the total space X of a Serre fibration p : X → B in terms of the (co)homology of B and the fiber F . More
precisely, he showed that

Hp
sing(B,H

q
sing(F )) =⇒ Hp+q(X).

See definition 9 for a precise statement about the convergence of spectral sequences. The above convergence
is true for general Serre fibrations with some slight modifications; we’ve written a simplified version when B is
simply connected so the choice of fiber doesn’t matter since all fibers are homotopy equivalent.

Soon, many different examples of spectral sequences were found. Below we informally list a couple of them
that are important in algebraic geometry.
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1. (Serre-Hochschild) Let G be a group, N ⊴ G and A a G-module, then

Hp(G/N,Hq(N,A)) =⇒ Hp+q(G,A)

We will study this case in detail in Section 4.

2. (Čech-to-derived-functor) Let F be a presheaf on a topological space X with a fixed open cover U =
{Ui}i∈I . Then we have the Čech complex

Cq(U,F) :=
∏

i0,...,iq

F(Ui0 ∩ · · · ∩ Uiq )

which can be made into a cochain complex C•(U,F). Then the Čech cohomology of F with respect to the
cover U is defined as

Ȟq(U,F) := Hq(C•(U,F)).

Then there is a spectral sequence that satisfies

Ȟp(U,Hq(X,F)) =⇒ Hp+q(X,F)

where Hq(X,F) is the presheaf U 7→ Hq(U,F|U ) and Hn(X,F) is the right derived functor of the global
sections functor.

3. (Grothendieck) Let B,C and D be abelian categories such that both B and C have enough injectives.
Suppose we have two left exact functors

B C D
G F

such that G sends injective objects I in B to F-acyclic objects, i.e. (LiF)(G(I)) = 0 for all i > 0, where
{LiF}i≥0 are the left derived functors of F. Then for every object B ∈ B there is a convergent spectral
sequence

(RpF)(RqG(B)) =⇒ Rp+q(F ◦ G)(B).

In fact, the Grothendieck spectral sequence generalizes quite a few other spectral sequences like the
Hochschild-Serre spectral sequence.

In section 1 we go over the preliminary definitions of filtered abelian groups to set up the objects that will
produce for us the spectral sequences we will be interested in. In section 2, we review the basic definitions
of spectral sequence and their convergence. We also prove the existence of the exact sequence of edge terms
arising from a convergent spectral sequence, which is of great computational value. In section 3 we prove the
existence of spectral sequences attached to filtered abelian groups. This section can be mostly skipped on a
first reading since it is quite technical without any enlightening ideas or concepts. In section 4 we discuss the
Hochschild-Serre spectral sequence in detail and deduce some of its properties which are of importance in Class
Field Theory. Finally, in section 5 we discuss an interesting application of spectral sequences to the computation
of Euler characteristics of groups.

1 Filtered Abelian Groups

We begin with a description of the main way spectral sequences arise in the theory of Galois cohomology. It
starts with filtrations.

Definition 1. A filtration {F pA}p∈Z on an abelian group A is a descending chain of subgroups of A:

· · · ⊇ F p−1A ⊇ F pA ⊇ F p+1A ⊇ · · · .

An abelian group A with a filtration is called a filtered abelian group. Furthermore, if A is graded, say A = ⊕An,
then we say that:

• the filtration is compatible with the grading if

F pA =
⊕
q∈Z

(F pA ∩Ap+q).

• the filtration is regular if for every n ∈ Z, there exists an integer µ = µ(n) ∈ Z such that

p ≥ µ =⇒ F pA ∩An = 0
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Remark. If A is a graded abelian group with a compatible filtration {F pA}p∈Z, then each term of the filtration
F pA is itself a graded abelian group with homogeneous components

(F pA)q := F pA ∩Ap+q.

These components hold a lot of information about the original group in the way they interact with both the
grading of A and its filtration. More precisely, (F pA)q is a subgroup of both the (p + q)th homogeneous
component of A and the pth part of the filtration which can be recovered by summing (F pA)q over all q ≥ 0.

Example. Graded abelian groups possess a “trivial” filtration that is both regular and compatible with its
grading. We define this filtration as follows: if A = ⊕An is a graded abelian group, we set the pth element of
the filtration as

F pA :=
⊕
n≥p

An ⊆ A. (1)

It is clear that that {F pA}p∈Z is a filtration on A. Furthermore:

F pA ∩Ap+q =
(⊕
n≥p

An

)
∩Ap+q =

{
Ap+q if q ≥ 0

0 if q < 0

so that ⊕
q∈Z

(F pA ∩Ap+q) =
⊕
q≥0

Ap+q =
⊕
n≥p

An = F pA,

and hence the filtration {F pA}p∈Z is compatible with the natural grading of A. Furthermore, it is clear that
for any integer n ∈ Z, we may take µ(n) = n+ 1 so that

p ≥ n+ 1 =⇒ F pA ∩An =
(⊕
m≥p

Am

)
∩An =

⊕
m≥p

(Am ∩An) = 0

since Am ∩ An = 0 whenever m ̸= n. This shows that the above filtration is regular. This filtration is called
the trivial filtration of the graded group A.

Graded abelian groups arise naturally as complexes so it is important to incorporate differentials into our
study of graded abelian groups. Below we give the natural definition of differential in the context of graded
abelian groups, which is equivalent to the usual definition of differentials of cochain complexes.

Definition 2. Let A = ⊕An be a graded abelian group. An endomorphism δ : A → A is called a differential
if it satisfies:

(i) δ is of degree 1, that is δ(An) ⊆ An+1,

(ii) δ ◦ δ = 0,

Furthermore, if A is filtered by {F pA}p∈Z, we say that δ is compatible with the filtration if

(iii) δ(F pA) ⊆ F pA.

Remark. Condition (i) tells us that δ = ⊕δn where δn : An → An+1 is the restriction δn := δ|An
. Hence a

differential δ : A→ A on a graded abelian group A = ⊕An is precisely a cochain complex

· · · An−1 An An+1 · · ·δn−1 δn

Remark. Suppose A is a graded abelian group with a filtration {F pA}p∈Z and δ : A → A is a compatible
differential. Since the filtration is compatible with the grading, we know that each term F pA of the filtration
is itself a graded abelian group. Since δ(An) ⊆ An+1 by assumption and δ(F pA) ⊆ F pA by the above, then
the restriction δ|FpA sends the nth homogeneous component of F pA to its (n+ 1)th homogeneous component.
Indeed

δ|FpA((F
pA)n) = δ(F p ∩Ap+n) ⊆ δ(F pA) ∩ δ(Ap+n) = F pA ∩Ap+(n+1) = (F pA)n+1.

so δ restricts to a differential on F pA.

We collect all these compatibility conditions that we’ve seen so far. For lack of a better term, we call these
groups admissible and we fix the following notation:

Definition 3. We say that an abelian group A = (A, {An}n∈Z, {F pA}p∈Z, δ) is admissible if A satisfies the
following:
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(A.i) A is graded with A = ⊕An,

(A.ii) A is filtered by {F pA}p∈Z and this filtration is regular and compatible with the grading,

(A.iii) A has a differential δ : A→ A that is compatible with the filtration on A.

It is for admissible groups that we can define a cohomology module.

Definition 4. Let A be an admissible group. The cohomology module of A is the graded abelian group

H∗(A) =
⊕
n∈Z

Hn(A) where Hn(A) =
ker δn

im δn−1
.

Remark. For A an admissible group, we can form a cochain complex

A• := · · · An−1 An An+1 · · ·δn−1 δn

where δn := δ|An so that Hn(A) is the nth cohomology group of this chain, i.e.

Hn(A) = Hn(A•).

Furthermore, we may consider each term F pA of the filtration as its own cochain complex

(F pA)• · · · (F pA)n−1 (F pA)n (F pA)n+1 · · ·δp+n−1|FpA δp+n|FpA

and hence the nth cohomology of this cochain is:

Hn((F pA)•) =
ker(δp+n|FpA)

im(δp+n−1|FpA)
= Hp+n(F pA). (2)

The cohomology module of A comes equipped with quite a bit of information about the filtered group A.
Let us unravel some of it. The inclusion

ιp : F
pA ↪→ A

induces maps Hn(F pA) −→ Hn(A) on cohomology for all n and hence we get a map

ι∗p : H
∗(F pA) −→ H∗(A).

The images of these maps form a filtration of H∗(A):

Lemma 1. Let A be an admissible group and H∗(A) its cohomology module. Then the images,

F pH(A) := ιp(H
∗(F pA)) ⊆ H∗(A), p ∈ Z

form a filtration of H∗(A). This filtration is regular and compatible with the grading of H∗(A).

Proof. Routine.

Next we discuss the graded group associated to a filtered abelian group.

Definition 5. Let A be a filtered abelian group, with filtration {F pA}p∈Z. The associated graded group of A
is the graded abelian group

gr(A) :=
⊕
n∈Z

gr(A)n where gr(A)n := FnA/Fn+1A.

Remark. If furthermore A is filtered and the filtration on A is compatible with its grading, then

gr(A)p =
⊕F pA ∩Ap+q

⊕F p+1A ∩Ap+1+q

∼=
⊕qF pA ∩Ap+q

⊕q′F p+1A ∩Ap+q′
(q′ = q + 1)

∼=
⊕
q∈Z

F pA ∩Ap+q
F p+1A ∩Ap+q

=
⊕
q∈Z

(F pA)q
(F p+1A)q−1

Thus, if we set
(F pgr(A))q := (F pA)q/(F

p+1A)q−1

we get that

gr(A) =
⊕
p,q∈Z

(F pgr(A))q

is a bigraded abelian group.
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2 Spectral Sequences

The following constructions can all be done for any abelian category (most notably the category of chain
complexes and the category of sheaves). Here, we will only focus on the category of abelian groups to simplify
the exposition.

Definition 6. A (cohomological) spectral sequence E = (Ep,qr , δp,qr )r≥r0 of abelian groups starting at r = r0,
consists of the following data: for each r ≥ r0 and p, q ∈ Z we have

(SS.i) an abelian group Ep,qr , called the (p, q)th term in the rth page of E,

(SS.ii) a group homomorphism δp,qr : Ep,qr → Ep+r,q−r+1
r , called the rth differential at (p, q), such that δp+r,q−r+1

r ◦
δp,qr = 0 for all p, q and r,

(SS.iii) An isomorphism
ker δp,qr

im δp−r,q+r−1
r

∼−→ Ep,qr+1.

It is convenient to have a visual representation of spectral sequences. The rth page of a spectral sequence
can be viewed as a 2 dimensional grid like Z×Z where we attach Ep,qr to the point with coordinates (p, q). The
rth differentials are all diagonal arrows on rth page that go over r places and downwards (r − 1) places. For
example, the 2nd page of a spectral sequence and its 2nd differentials look like:

E−2,−2
2

E−2,−1
2

E−2,0
2

E−2,1
2

E−2,2
2

E−1,−2
2

E−1,−1
2

E−1,0
2

E−1,1
2

E−1,2
2

E0,−2
2

E0,−1
2

E0,0
2

E0,1
2

E0,2
2

E1,−2
2

E1,−1
2

E1,0
2

E1,1
2

E1,2
2

E2,−2
2

E2,−1
2

E2,0
2

E2,1
2

E2,2
2

d0,12

To visualize condition (SS.iii), we interpret the isomorphism as an assignment that sends Ep,qr to the coho-
mology of the cochain induced by the differentials δp+r,q−r+1

2 and δp,q2 . Hence we have:
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E−2,−2
3

E−2,−1
3

E−2,0
3

E−2,1
3

E−2,2
3

E−1,−2
3

E−1,−1
3

E−1,0
3

E−1,1
3

E−1,2
3

E0,−2
3

E0,−1
3

E0,0
3

E0,1
3

E0,2
3

E1,−2
3

E1,−1
3

E1,0
3

E1,1
3

E1,2
3

E2,−2
3

E2,−1
3

E2,0
3

E2,1
3

E2,2
3

E−2,−2
2

E−2,−1
2

E−2,0
2

E−2,1
2

E−2,2
2

E−1,−2
2

E−1,−1
2

E−1,0
2

E−1,1
2

E−1,2
2

E0,−2
2

E0,−1
2

E0,0
2

E0,1
2

E0,2
2

E1,−2
2

E1,−1
2

E1,0
2

E1,1
2

E1,2
2

E2,−2
2

E2,−1
2

E2,0
2

E2,1
2

E2,2
2

E0,1
3 is the

cohomology of
this red cochain

at E0,1
2

Notice that as long as you have the differentials dp,qr for every r ≥ r0, then given Ep,qr0 , the rest of the terms
Ep,qr are determined. So one can say that a spectral sequence is “determined” by the information on the first
page. In general, you need to know all the differentials on every page to reconstruct the spectral sequence from
only the first page, but in practice, these higher level differentials are all induced by the differentials on the first
page. So most of the time, a spectral sequence is completely by the information on the first page.

Now let us take a closer look at condition (SS.iii). It tells us that Ep,qr+1 is a quotient of ker δp,qr ⊆ Ep,qr , i.e.
a subquotient of Ep,qr . Hence, the sequence Ep,qr0 , E

p,q
r0+1, E

p,q
r0+2, . . . is a sequence of consecutive subquotients.

Thus there exists two sequences

Bp,qr0 ⊆ Bp,qr0+1 ⊆ Bp,qr0+2 ⊆ · · · and Zp,qr0 ⊇ Zp,qr0+1 ⊇ Zp,qr0+2 ⊇ · · · (3)

of subgroups of Ep,qr0 that satisfy

(i) Bp,qi ⊆ Zp,qj for all i, j ≥ r0,

(ii) Ep,qr
∼= Zp,qr /Bp,qr ,

This is essentially the Correspondence Theorem (cf. Proposition 12). With these observations, we can define
an important part of spectral sequences.

Definition 7. Let E = (Ep,qr , δp,qr )r≥r0 be a spectral sequence of abelian groups starting at r = r0. Then for
any p, q ∈ Z, we define:

• Bp,q∞ :=
⋃
r≥r0 B

p,q
r ,

• Zp,q∞ :=
⋂
r≥r0 Z

p,q
r ,

• Ep,q∞ = Zp,q∞ /Bp,q∞ .

Remark. The above definitions immediately generalize to an abelian category C for which both limits and
colimits exist. In this case Bp,q∞ , resp. Zp,q∞ , is the colimit, resp. limit, of the family {Bp,qr }r≥r0 , resp. {Zp,qr }r≥r0 ,
of objects of C.
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Usually, the sequences {Bp,qr }r≥r0 and {Zp,qr }r≥r0 in (3) are eventually constant which completely eliminates
the need to take limits/colimits. In fact, this stabilization occurs for quite general spectral sequences. Below
we introduce a common type of spectral sequence for which the sequences in (3) are eventually constant.

Definition 8. We say that a spectral sequence E = (Ep,qr , δp,qr )r≥r0 is a first quadrant spectral sequence if
Ep,qr = 0 if p < 0 or q < 0.

It is clear that for a first quadrant spectral sequence,

r ≥ max{|p|+ 1, |q|+ 2} =⇒ δp,qr = 0 and δp−r,q+r−1
r = 0.

The intuition is that if r is large enough, then δp,qr will send Ep,qr to a point outside of the first quadrant and
δp−r,q+r−1
r will come from some Ep−r,q+r−1

r outside of the first quadrant as well.

E0,0
3

E0,1
3

E0,2
3

E0,3
3

E0,4
3

E0,5
3

E1,0
3

E1,1
3

E1,2
3

E1,3
3

E1,4
3

E1,5
3

E2,0
3

E2,1
3

E2,2
3

E2,3
3

E2,4
3

E2,5
3

E3,0
3

E3,1
3

E3,2
3

E3,3
3

E3,4
3

E3,5
3

E4,0
3

E4,1
3

E4,2
3

E4,3
3

E4,4
3

E4,5
3

E5,0
3

E5,1
3

E5,2
3

E5,3
3

E5,4
3

E5,5
3

E2,1
3

0

0

δ−1,2
3

δ2,13

Furthermore, the conditions δp,qr = 0 and δp−r,q+r−1
r = 0 immediately imply:

δp,qr = 0 =⇒ ker(δp,qr ) = Ep,qr =⇒ Ep,qr+1
∼= Ep,qr /im(δp−r,q+r−1

r ) =⇒ Ep,qr ↠ Ep,qr+1

δp−r,q+r−1
r = 0 =⇒ im(δp−r,q+r−1

r ) = 0 =⇒ Ep,qr+1
∼= ker δp,qr =⇒ Ep,qr+1 ↪→ Ep,qr

Thus:
r ≥ max{|p|+ 1, |q|+ 2} =⇒ Ep,qr

∼= Ep,qr+1
∼= Ep,qr+2

∼= · · ·

and the sequence stabilizes. Before continuing, we state the special cases when p = 0 or q = 0 which will become
important later on:

Ep,0r0 ↠ Ep,0r0+1 ↠ · · · ↠ Ep,0p ↠ Ep,0p+1 = Ep,0p+2 = · · · = Ep,0∞ =⇒ Ep,0r0 ↠ Ep,0∞ ,

E0,q
∞ = · · · = E0,q

q+3 = E0,q
q+2 ↪→ E0,q

q+1 ↪→ · · · ↪→ E0,q
r0 =⇒ E0,q

∞ ↪→ E0,q
r0

(4)

In general, if E is a 1st quadrant spectral sequence, we have: if r ≥ r0 and p, q > 0, there are maps

ϵBr : Ep,0r Ep,0∞ ϵSr : E0,q
∞ E0,q

r (5)

defined by composing the morphisms in (4) up to the appropriate page. In fact, we showed that

r > p =⇒ ϵBr is an isomorphism , r > q + 1 =⇒ ϵSr is an isomorphism. (6)

The terms Ep,0r and E0,q
r are called edge terms because they lie on the edges of the rth page of E. The

maps ϵBr and ϵSr are called the bottom-edge maps and side-edge maps respectively. Usually, the subindex r is
suppressed from the notation since these maps are usually considered only on the first page, i.e. r = r0.
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ε
S

ε
B

8

E
0,3
8

E
2,0
8

7

E
0,3
7

E
2,0
7

6

E
0,3
6

E
2,0
6

5

E
0,3
5

E
2,0
5

4

E
0,3
4

E
2,0
4

3

E
0,3
3

E
2,0
3

2

E0,3
2

E2,0
2

∞

E0,3
∞

E2,0
∞

The stabilizing sequences {Bp,qr }r≥r0 and {Zp,qr }r≥r0 hint at the fact that spectral sequences should converge
to something. Below we describe what it means for a spectral sequence to converge.

Definition 9. Let E = (Ep,qr , δp,qr )r≥r0 be a spectral sequence of abelian groups starting at r = r0. Let {An}n∈Z
be a family of filtered abelian groups, such that each An has a filtration {F pAn}p∈Z that satisfies F pAn = 0 for
sufficiently small p and F pAn = An for sufficiently large. We say that E converges to {An}n∈Z, denoted by

Ep,qr0 =⇒ Ap+q

if for every p, q ∈ Z, there exists an isomorphism of groups

αp,q : Ep,q∞ gr(Ap+q)p = F pAp+q/F p+1Ap+q∼

The required condition on the filtration {F pAn}p∈Z of An, namely that F pAn = 0 for sufficiently small p
and F pAn = An for sufficiently large p, can be rephrased as saying that the filtration on An is finite, i.e. after
possibly reindexing, we have a finite descending chain

An = F 0An ⊇ F 1An ⊇ · · · ⊇ F pAn ⊇ 0

So the homogenous components of the associated graded group gr(An) are nothing but the composition factors
of An, i.e.

gr(An)0 =
An

F 1An
, gr(An)1 =

F 1An

F 2An
, · · · gr(An)p =

F pAn

0
= F pAn.

Thus we can say that a spectral sequence converges simultaneously to the composition factors of all the An’s.
This is very useful since it follows the general philosophy in algebra that studying composition factors yields a
great deal of information about the group itself.

Let us look a little closer. We begin by fixing one of the filtered abelian groups An. The terms of the
spectral sequence we need to study the decomposition factors of An are the terms Ep,qr with p+ q = n, or more
impoprtantly, the terms Ep,q∞ . If the spectral sequence is a 1st quadrant spectral sequence, then the relevant
terms are E0,n

∞ , E1,n−1
∞ , . . . , En,0∞ . Under this assumption, we have that the isomorphisms αp,q give us:

Ep,n−p∞
∼= gr(An)p = pth composition factor of An.

Thus, since E is 1st quadrant, for p > n we have

0 = Ep,n−p∞ = gr(An)p =
F pAn

F p+1An
=⇒ F pAn = F p+1An
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so the filtration stabilizes precisely at p = n+1. Since the filtration is finite, then Fn+1An = Fn+2An = · · · = 0.
In particular, we have that:

En,0∞
∼= FnAn An

and E0,n
∞

∼= An/F 1An, i.e there is an epimorphism

An An/F 1An ∼= E0,n
∞ .

If we compose these maps with the edge maps we defined in (5) we obtain: for r ≥ r0

εn,0r : En,0r An and ε0,nr : An E0,n
r (7)

Beause of their importance, we record these morphisms:

Definition 10. Let E = (Ep,qr , δp,qr )r≥r0 be a 1st quadrant spectral sequence of abelian groups starting at
r = r0. Suppose that Ep,qr0 =⇒ Ap+q. The morphisms εn,0r and ε0,nr defined in (7) are called the edge maps of
E; the ε0,nr are called the side-edge maps and the εn,0r are called the bottom-edge maps.

The edge maps are very important since they relate the edge terms of E with the limit groups An themselves,
and not just their composition factors. This means that the edge maps carry a lot of information about the
limit of the spectral sequence. For small p and q we can actually say quite a lot about these edge maps.

Proposition 2. Let E = (Ep,qr , δp,qr )r≥r0 be a 1st quadrant spectral sequence of abelian groups starting at r0 ≤ 2.
Suppose that this spectral sequence converges: Ep,qr =⇒ Ap+q. Then there is an exact sequence

0 E1,0
2 A1 E0,1

2 E2,0
2 A2.

ε1,02 ε0,12 δ0,12 ε2,02

Proof. We prove exactness...

(at E1,0
2 ) First, we have that ε1,02 is equal to the composition

E1,0
2 E1,0

∞ F 1A1/F 2A2 = F 1A1 A1ϵB2 α1,0

(8)

which is injective since the first arrow is an isomorphism by (6).

(at A1) The map ε0,12 is equal to the composition

A1 A1/F 1A1 = gr(A1)1 E0,1
∞ E0,1

2

(α0,1)−1 εS2 (9)

where the first arrow has kernel F 1A1, which is the image of ε1,02 by (8).

(at E0,1
2 ) The cochain passing through E0,1

2 is:

· · · E−2,2
2 E0,1

2 E2,0
2 · · ·

δ−2,2
2 δ0,12

Since E is 1st quadrant, E−2,2
2 = 0 and hence im(δ−2,2

2 ) = 0. Thus, since r = 3 ≥ max{0 + 1, 1 + 2}, we
have that

E0,1
∞

∼= E0,1
3

∼=
ker δ0,12

imδ−2,2
2

∼= ker δ0,12 .

Since ϵS2 : E0,1
∞ ↪→ E0,1

2 is always injective, then by definition of ε0,12 , or more precisely (9), we have that
the image of ε0,12 is ker δ0,12 .

(at E2,0
2 ) The cochain passing through E2,0

2 is:

· · · E0,1
2 E2,0

2 E4,−1
2 · · ·

δ0,12 δ2,02

Since E is 1st quadrant, E4,−1
2 = 0 so that δ2,02 = 0 and hence ker δ2,02 = E2,0

2 . Thus the projection

E2,0
2 = ker δ2,02

ker δ2,02

imδ0,12

∼= E2,0
3 E2,0

∞
ϵB3

has kernel imδ0,12 because ϵB3 is an isomorphism by (6).
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3 The Spectral Sequence of a Filtered Abelian Group

We now focus on the main example of interest. Given an admissible group A, e.g. A = C∗(G,B), we will
construct a spectral sequence E that converges to the cohomology module of A. To state this precisely, we recall
that the cohomology module H∗(A) is a graded abelian group

H∗(A) =
⊕
n∈Z

Hn(A).

By Lemma 1, it is filtered by
F pH∗(A) := ι∗p

(
H∗(F pA)

)
where ι∗p is the map on cohomology induced by ιp : F pA ↪→ A. Since this filtration is compatible with the
grading, then each homogeneous component Hn(A) of H∗(A) is filtered by

F pHn(A) := F pH∗(A) ∩Hn(A).

Since the filtration on H∗(A) is regular, then F pHn(A) = 0 for sufficiently large p. This means we can talk
about convergence of spectral sequences to {Hn(A)} since eachHn(A) is a filtered abelian group whose filtration
satisfies the necessary finiteness condition. We can now state the main result of this section.

Theorem 3. Let A be an admissible group. Then there exists a 1st quadrant spectral sequence E = (Ep,qr , δp,qr )
starting at r = 1 that converges to the cohomology module of A, i.e.

Ep,q1 =⇒ Hp+q(A).

The first page of E is Ep,q1 = Hp+q(gr(A)p).

The proof is quite technical though not difficult. We fix some notation: let A = (A, {An}n∈Z, {F pA}p∈Z, δ)
be an admissible group. For simplicity we abbreviate:

Ap := F pA.

Proof. (of Theorem 3) Let r ≥ 2. We will carry out the construction of the spectral sequence first and then
show that it converges to what we want.

Step 1: Construction of Ep,qr .

We will define the groups Ep,qr as quotients Zp,qr /Bp,qr , so let p, q ∈ Z. The natural projection Ap/Ap+r →
(Ap/Ap+r)/(Ap+1/Ap+r) ∼= Ap/Ap+1 induces the following map on cohomology:

Hp+q(Ap/Ap+r) −→ Hp+q(Ap/Ap+1).

So we define Zp,qr to be the image of this map.

Zp,qr := im
(
Hp+q(Ap/Ap+r) −→ Hp+q(Ap/Ap+1)

)
Next, the natural short exact sequence

0 Ap Ap−r+1 Ap−r+1/Ap 0 (10)

induces a long exact sequence in cohomology with connecting homomorphism ∆:

· · · Hp+q−1(Ap−r+1) Hp+q−1(Ap−r+1/Ap) Hp+q(Ap) Hp+q(Ap−r+1) · · ·∆

Thus we define Bp,qr as:

Bp,qr := im
(
Hp+q−1(Ap−r+1/Ap) Hp+q(Ap) Hp+q(Ap/Ap+1)∆

)
where the second arrow is the map on cohomology induced by the natural projection Ap ↠ Ap/Ap+1.

In order to define Ep,qr as Zp,qr /Bp,qr and have it behave in the same way spectral sequences do, we must
show that Zp,qr+1 ⊆ Zp,qr , Bp,qr ⊆ Br+1 and Bp,qr ⊆ Zp,qr . We prove these three claims below.
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Claim: Zp,qr+1 ⊆ Zp,qr for all r ≥ 2.

The natural projections

Ap/Ap+r+1 Ap/Ap+1

Ap/Ap+r

induce on cohomology, the following commutative diagram

Hp+q(Ap/Ap+r+1) Hp+q(Ap/Ap+1)

Hp+q(Ap/Ap+r)

The claim now follows since Zp,qr+1 is the image of the top arrow and Zp,qr is the image of the diagonal
arrow.

Claim: Bp,qr ⊆ Bp,qr+1 for all r ≥ 2.

The short exact sequence (10) for r and r + 1 fit side-by-side as follows:

0 Ap Ap−r+1 Ap−r+1/Ap 0

0 Ap Ap−r Ap−r/Ap 0.

(11)

Since taking long exact sequences in cohomology is natural, we obtain the following two side-by-side long
exact sequences:

· · · Hp+q−1(Ap−r+1) Hp+q−1(Ap−r+1/Ap) Hp+q(Ap) · · ·

· · · Hp+q−1(Ap−r) Hp+q−1(Ap−r/Ap) Hp+q(Ap) · · ·

∆

∆

The claim now follows immediately from the following commutative diagram:

Hp+q−1(Ap−r+1/Ap)

Hp+q(Ap) Hp+q(Ap/Ap+1)

Hp+q−1(Ap−r/Ap)

∆

∆

since Bp,qr is the image of the top path and Bp,qr+1 is the image of the bottom path.

Claim: Bp,qr ⊆ Zp,qr for all r ≥ 2.

The natural projections

Ap Ap/Ap+1

Ap/Ap+r

induce the following commutative diagram

Hp+q(Ap) Hp+q(Ap/Ap+1)

Hp+q(Ap/Ap+r)

(12)

The claim immediately follows by tacking on the connecting homomorphism ∆ as follows

Hp+q−1(Ap−r+1/Ap) Hp+q(Ap) Hp+q(Ap/Ap+1)

Hp+q(Ap/Ap+r)

∆

and observing that Bp,qr is the image of the top row and Zp,qr is the the image of the diagonal arrow.
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From the three claims we obtain a sequence

Bp+q2 ⊆ Bp,q3 ⊆ · · · ⊆ Zp,q3 ⊆ Zp,q2

so we may define
Ep,qr := Zp,qr /Bp,qr .

This completes the construction of Ep,qr and part (SS.i) of the definition of spectral sequence.
Before moving on, we compute the first page. For r = 1, we have Ap−r+1/Ap = Ap/Ap = 0 and Ap/Ap+r =

Ap/Ap+1 so that the maps

Hp+q−1(Ap−r+1/Ap)
∆−→ Hp+q(Ap) −→ Hp+q(Ap/Ap+1) and Hp+q(Ap/Ap+r) −→ Hp+q(Ap/Ap+1)

are equal to 0 and the identity respectively when r = 1. Hence

Bp,q1 = 0 and Zp,q1 = Hp+q(Ap/Ap+1) = Hp+q(gr(A)p).

Step 2: construction of the differentials.

The natural short exact sequence 0 → Ap+r → Ap → Ap/Ap+r → 0 can be placed along side the same short
exact sequence for r = 1 and then “reduced modulo Ap+r+1” to obtain the following commutative diagram

0 Ap+r Ap Ap/Ap+r 0

0 Ap+1 Ap Ap/Ap+1 0

0 Ap+1/Ap+r+1 Ap/Ap+r+1 Ap/Ap+1 0

If we only consider the first and third rows, we obtain two side-by-side long exact sequences in cohomology:

· · · Hp+q(Ap) Hp+q(Ap/Ap+r) Hp+q+1(Ap+r) · · ·

· · · Hp+q(Ap/Ap+r+1) Hp+q(Ap/Ap+1) Hp+q+1(Ap+1/Ap+r+1) · · ·

∆

θ

Γ

(13)

where Γ is the corresponding connecting homomorphism and θ is just the composite map:

θ =
(
Hp+q(Ap/Ap+r) Hp+q+1(Ap+r) Hp+q+1(Ap+1/Ap+r+1)∆

)
The triangle in (12), with the exponents suitably shifted, appears in the first square of (13) so we can collapse
it to get

Hp+q(Ap/Ap+r)

Hp+q(Ap/Ap+r+1) Hp+q(Ap/Ap+1) Hp+q+1(Ap+1/Ap+r+1)

θ

Γ

(14)

Next, we consider the following commutative diagram with exact rows:

0 Ap+r/Ap+r+1 Ap+1/Ap+r+1 Ap+1/Ap+r 0

0 Ap+r/Ap+r+1 Ap/Ap+r+1 Ap/Ap+r 0

0 Ap+r Ap Ap/Ap+r 0

By taking long exact sequences in cohomology, we get

· · · Hp+q(Ap+1/Ap+r) Hp+q+1(Ap+r/Ap+r+1) Hp+q+1(Ap+1/Ap+r+1) · · ·

· · · Hp+q(Ap/Ap+r) Hp+q+1(Ap+r/Ap+r+1) Hp+q+1(Ap/Ap+r+1) · · ·

· · · Hp+q(Ap/Ap+r) Hp+q+1(Ap+r) Hp+q+1(Ap) · · ·

Γ

Γ

∆

(15)
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Thus if we rotate the first row of the above diagram 90◦ clockwise and attach it to the right side of (13) we
obtain

Hp+q(Ap+1/Ap+r)

Hp+q(Ap/Ap+r) Hp+q+1(Ap+r) Hp+q+1(Ap+r/Ap+r+1)

Hp+q+1(Ap+1/Ap+r+1) Hp+q+1(Ap+1/Ap+r+1)

Γ

∆

θ

where the diagonal dashed arrow comes from the left most column of (15) and the horizontal dashed arrow
comes from middle column of (15). Rewriting this diagram into a simpler form gives

Hp+q(Ap/Ap+r)

Hp+q(Ap+1/Ap+r) Hp+q+1(Ap+r/Ap+r+1) Hp+q+1(Ap+1/Ap+r+1)

θ

Γ

(16)

Now, we have two diagrams, namely (14) and (16) that are in the form of Lemma 13. Thus we obtain
isomorphisms

imθ ∼=
im
(
Hp+q(Ap/Ap+r) → Hp+q(Ap/Ap+1)

)
im (Hp+q(Ap/Ap+r+1) → Hp+q(Ap/Ap+1))

=
Zp,qr
Zp,qr+1

from diagram (14) and

imθ ∼=
im
(
Hp+q(Ap/Ap+r)

∆−→ Hp+q+1(Ap+r) −→ Hp+q+1(Ap+r/Ap+r+1)
)

im
(
Hp+q(Ap+1/Ap+r)

Γ−→ Hp+q+1(Ap+r/Ap+r+1)
)

∼=
im
(
Hp+q(Ap/Ap+r)

∆−→ Hp+q+1(Ap+r) −→ Hp+q+1(Ap+r/Ap+r+1)
)

im
(
Hp+q(Ap+1/Ap+r)

∆−→ Hp+q+1(Ap+r) −→ Hp+q+1(Ap+r/Ap+r+1)
)

=
Bp+r,q−r+1
r+1

Bp+r,q−r+1
r

from diagram (16). Thus we get an isomorphism

dp,qr :
Zp,qr
Zp,qr+1

Bp+r,q−r+1
r+1

Bp+r,q−r+1
r

.∼

Finally, since Zp,qr ⊇ Zp,qr+1 ⊇ Bp,qr , then pojection modulo Zp,qr+1/B
p,q
r is a surjective map

πp,qr : Ep,qr =
Zp,qr
Bp,qr

↠
Zp,qr
Zp,qr+1

.

Similarly, Bp+r,q−r+1
r+1 ⊆ Zp+r,q−r+1

r+1 ⊆ Zp+r,q−r+1
r so we have an inclusion map

σp+r,q−r+1
r+1 :

Bp+r,q−r+1
r+1

Bp+r,q−r+1
r

↪→ Zp+r,q−r+1
r

Bp+r,q−r+1
r

= Ep+r,q−r+1
r

Thus we obtain the differential map

δp,qr := σp+r,q−r+1
r+1 ◦ dp,qr ◦ πp,qr : Ep,qr −→ Ep+r,q−r+1

r (17)

which has the required properties because

imδp−r,q+r−1
r = imσp,qr+1 =

Bp,qr+1

Bp,qr
⊆
Zp,qr+1

Bp,qr
= kerπp,qr = ker δp,qr

and hence

Ep,qr+1 =
Zp,qr+1

Bp,qr+1

∼=
Zp,qr+1/B

p,q
r

Bp,qr+1/B
p,q
r

=
ker δp,qr

imδp−r,q+r−1
r

.
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Step 3: Convergence of the Spectral Sequence.

By Step 1 we have the chains

· · · ⊆ Zp,qr+1 ⊆ Zp,qr ⊆ · · · and · · · ⊆ Bp,qr ⊆ Bp,qr+1 ⊆ · · ·

we define Zp,q∞ := ∩Zp,qr and Bp,q∞ := ∪Bp,qr . However, since the filtration on A is regular, the above sequences
stabilize. Below we construct the candidates for the limits of these sequences and then show that they are
indeed the required limits.

Consider (part of) the diagram from Step 2:

0 Ap+r Ap Ap/Ap+r 0

0 Ap+1 Ap Ap/Ap+1 0

which in cohomology gives us

· · · Hp+q(Ap) Hp+q(Ap/Ap+r) Hp+q+1(Ap+r) · · ·

· · · Hp+q(Ap) Hp+q(Ap/Ap+1) Hp+q+1(Ap+1) · · ·

∆

∆

(18)

So if we define λ to be the composition

λ =
(
Hp+q(Ap/Ap+r) Hp+q+1(Ap+r) Hp+q+1(Ap+1)∆

)
we obtain the diagram

Hp+q(Ap/Ap+r)

Hp+q(Ap) Hp+q(Ap/Ap+1) Hp+q+1(Ap+1)

λ

∆

Thus Lemma 13 tells us that ∆ induces an isomorphism

imλ ∼=
im
(
Hp+q(Ap/Ap+r) → Hp+q(Ap/Ap+1)

)
im (Hp+q(Ap) → Hp+q(Ap/Ap+1))

=
Zp,qr

im (Hp+q(Ap) → Hp+q(Ap/Ap+1))

However, by regularity, λ = 0 for sufficiently large r. More precisely, the cohomology of Ap, as defined in (2),
tells us that for n = p + q + 1 there is an integer µ := µ(p + q + 1) such that if p + r ≥ µ(p + q + 1) then
Ap+r ∩Ap+q+1 = 0 and thus

Hp+q+1(Ap+r) = Hq−r+1((Ap+r)•) =
ker(δp+q+1|Ap+r )

im(δp+q|Ap+r )
⊆ Ap+r ∩Ap+q+1

im(δp+q|Ap+r )
= 0.

Therefore, λ factors through the zero map whenever r ≥ µ(p+ q + 1)− p. Thus we have:

r ≥ µ(p+ q + 1)− p =⇒ Zp,qr = im
(
Hp+q(Ap) → Hp+q(Ap/Ap+1)

)
We can now set:

Zp,q∞ := im
(
Hp+q(Ap) → Hp+q(Ap/Ap+1)

)
.

As for Bp,q∞ , we reduce the short exact sequence 0 → Ap → A → A/Ap → 0 modulo Ap+1 to obtain the
following side-by-side short exact sequences

0 Ap A A/Ap 0

0 Ap/Ap+1 A/Ap+1 A/Ap 0

which induces the following side-by-side long exact sequences in cohomology:

· · · Hp+q−1(A/Ap) Hp+q(Ap) Hp+q(A) · · ·

· · · Hp+q−1(A/Ap) Hp+q(Ap/Ap+1) Hp+q(A/Ap+1) · · ·Ξ
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So if we define the composition

ψ :=
(
Hp+q(Ap) Hp+q(A) Hp+q(A/Ap+1)

)
we obtain the diagram

Hp+q(Ap)

Hp+q−1(A/Ap) Hp+q(Ap/Ap+1) Hp+q(A/Ap+1)

ψ

Ξ

and thus Lemma 13 implies that we have an isomorphism

imψ ∼=
im
(
Hp+q(Ap) → Hp+q(Ap/Ap+1)

)
im (Hp+q−1(A/Ap) → Hp+q(Ap/Ap+1))

=
Zp,q∞
im(Ξ)

Now, ψ also appears in the diagram

Hp+q(Ap)

Hp+q(Ap+1) Hp+q(A) Hp+q(A/Ap+1)

ψ
ι∗p

ι∗p+1

where the inclusions ιp : Ap ↪→ A define the filtration on H∗(A). Thus the image of the vertical arrow is the
(p + q)th component of H∗(A)p, and the image of the first horizontal arrow is the (p + q)th component of
H∗(A)p+1. Thus Lemma 13 gives us an isomorphism between these images, i.e. gr(Hp+q(A))p and the image
of ψ. We conclude that

gr(Hp+q(A))p ∼= imψ ∼=
Zp,q∞
im(Ξ)

Therefore, we will finish the proof of the Theorem when we’ve established

im(Ξ) =
⋃
r≥1

Bp,qr = Bp,q∞ . (19)

We prove this below.
The three side-by-side exact sequences

0 Ap Ap−r+1 Ap−r+1/Ap 0

0 Ap A A/Ap 0

0 Ap/Ap+1 A/Ap+1 A/Ap 0

induce on cohomology

· · · Hp+q−1(Ap−r+1/Ap) Hp+q(Ap) Hp+q(Ap−r+1) · · ·

· · · Hp+q−1(A/Ap) Hp+q(Ap) Hp+q(A) · · ·

· · · Hp+q−1(A/Ap) Hp+q(Ap/Ap+1) Hp+q(A/Ap+1) · · ·

∆

Ξ

Focusing only on the first two columns, if we combine the equalities and slightly reorder the above diagram, we
obtain

Hp+q−1(Ap−r+1/Ap)

Hp+q−1(A/Ap) Hp+q(Ap)

Hp+q(Ap/Ap+1)

∆

Ξ
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The image of the composition of the vertical arrows is, by definition, Bp,qr . Thus by the commutativity of the
diagram we clearly have Bp,qr ⊆ im(Ξ) for all r and hence⋃

r≥1

Bp,qr ⊆ im(Ξ).

4 The Hochschild-Serre Spectral Sequence

Let B be a G-module. Then we define the n-cochains of B as

Cn(G,B) := {f : G× · · · ×G︸ ︷︷ ︸
n times

→ B | f is continuous and normalized}.

Here, we say that f : Gn → A is normalized if f(g1, . . . , gn) = 0 whenever gi = 1 for at least one i = 1, . . . , n.
Since B is an abelian group, pointwise addition makes Cn(G,B) into an abelian group. For convenience,

we set G0(G,B) = {0}; notice that this implies we can set C0(G,B) = B. The cochains of B form a cochain
complex as follows: for n ≥ 0 we have the nth differential

δn : Cn(B,G) −→ Cn+1(B,G)

defined as:

δn(f)(g1, . . . , gn+1) = g1.f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1) + (−1)n+1f(g1, . . . , gn). (20)

Notice that if f is normalized, then so is δnf . Then, it is routine, but tedious, to verify the following properties.

Proposition 4. Let B be a G-module, then each δn is a group homomorphism and they satisfy δn+1 ◦ δn = 0,
i.e. we have the cochain complex:

0 B C1(G,B) C2(G,B) C3(G,B) · · ·δ0 δ1 δ2

With this cochain comples we can define cohomology groups as usual:

Zn(G,B) := ker δn, Bn(G,B) := im(δn−1) and Hn(G,B) := Zn(G,B)/Bn(G,B).

The elements of Zn(G,B), resp. Bn(G,B), are called n-cocycles, resp. n-coboundaries.

Remark. For n = 0 and n = 1, the defining formula for δn in (20) yields the following well known descriptions
of the low level cocyles and coboundaries:

Z0(G,B) = BG, B0(G,B) = 0 and H0(G,B) = BG;

Z1(G,B) = {f : G→ B | f(gh) = f(g) + g.f(h)},
B1(G,B) = {f : G→ B | ∃b ∈ B, f(g) = g.b− b}

From this data we can form the total complex of B:

C∗(G,B) :=

∞⊕
n=0

Cn(G,B)

which is automatically a graded abelian group whose nth homogeneous component is simply C∗(G,B)n =
Cn(G,B). Furthermore, the differentials combine to give us

δ := ⊕
n≥0

δn : C∗(G,B) −→ C∗(G,B) defined by δ
(
(fn)n≥0

)
= (δnfn)n≥0. (21)

From the properties of each δn in Proposition 4, we immediately obtain that δ is an endomorphism of C∗(G,B)
of degree 1, i.e. it sends homogenous elements of degree n to homogeneous elements of degree n+1. Furthermore,
we can form the cohomology module as

H∗(G,B) :=
⊕
n∈Z

Hn(G,B).
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Remark 5. If we remove the assumption that our cocycles be normalized, we obtain usual group cohomology.
However, these two cohomologies are isomorphic so there is no loss in generality to assume that our cocylces
are normalized.

Finally, we need to define a filtration on C := C∗(G,B). Let K ⊴ G be a normal subgroup of G. We define
a filtration of C starting at p = 0,

C = F 0C ⊇ F 1C ⊇ F 2C ⊇ · · ·
where each piece of the filtration F pC is defined as the following graded group:

F pC =

∞⊕
n=0

F pCn

where F pCn ⊆ Cn := Cn(G,B) is defined as follows:

F pCn :=


{f ∈ Cn | f factors through G× · · · ×G︸ ︷︷ ︸

n−p times

×G/K × · · · ×G/K︸ ︷︷ ︸
p times

} 1 ≤ p ≤ n

0 p > n.

For example, if p = 1, then F 1C = ⊕F 1Cn where

F 1Cn =

{
{f ∈ Cn | f factors through G× · · · ×G×G/K} if n ≥ 1

0 if n = 0

Thus F 1C consists of all cocycles f whose value f(γ1, . . . , γn) depends only on γ1, . . . , γn−1 and the coset γnK.
In general, F pC is the set of cocycles f whose value f(γ1, . . . , γn) depend only on γ1, . . . , γn−p and the cosets

γn−p+1K, . . . , γnK.

Proposition 6. The filtration defined above is regular and compatible with the grading of C∗(G,B) and its
differential δ. Thus C∗(G,B) is an admissible group.

Proof. By definition of the filtration as F pC = ⊕F pCn, the filtration is compatible with the grading. The
filtration is also clearly regular, since if p > n, then F pC ∩ Cn = F pCn = 0 by definition.

Showing that the filtration is compatible with the differential is more tedious so we only illustrate the
argument with an example. Suppose that f ∈ F 2C2 ⊂ C2. Then

δf(g1, g2, g3) = g1f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) (22)

Next, lets choose different representatives g′2 and g′3 of the cosets g2K and g3K respectively. We must prove
that (δf)(g1, g2, g3) = (δf)(g1, g

′
2, g

′
3). Since f ∈ F 2C2, then f factors through (G/K)× (G/K) and thus

f(g2, g3) = f(g2K, g3K) = f(g′2K, g
′
3K) = f(g′2, g

′
3)

f(g1g2, g3) = f(g1g2K, g3K) = f(g1g
′
2K, g

′
3K) = f(g1g

′
2, g

′
3)

f(g1, g2g3) = f(g1, g2g3K) = f(g1, g
′
2g

′
3K) = f(g1, g

′
2g

′
3)

f(g1, g2) = f(g1, g2K) = f(g1, g
′
2K) = f(g1, g

′
2).

Therefore the right hand side of (22) depends only of g1, g2K and g3K, that is δf ∈ F 2C3 ⊂ F 2C.

Remark. The filtration defined above is not compatible with the cup product of cocycles. More precisely, the
cup product ∪ : Cp(G,B)×Cq(G,B′) → Cp+q(G,B ⊗B′) of cocyles of two G-modules B and B′ is defined by

(f ∪ g)(γ1, . . . , γp+q) := f(γ1, . . . , γp)⊗ γ1 · · · γp · g(γp+1, . . . , γp+q)

and they induce a cup product on cohomology, however, for the filtration defined above, in general we have

F pC(G,B) ∪ F qC(G,B′) ̸⊆ F p+qC(G,B ⊗B′)

A different filtration is needed for the compatibility of the cup product to hold. One defines the new filtration

F ∗pCn :=

{
{f ∈ Cn | if n− p+ 1 many gi’s lie in K, then f(g1, . . . , gn) = 0 } 1 ≤ p ≤ n

0 p > n.

It is obvious that F ∗pCn ⊆ F pCn and these inclusions induce maps Hn(F ∗pC) → Hn(F pC). One can show,
with a bit of work, that these induced maps are isomorphisms and that they induce isomorphisms between the
two spectral sequences that these filtrations each define via Theorem 3. While this new filtration turns out to
be compatible with the cup product, it is less amenable to spectral sequence computations, which is why both
filtrations are needed. See §1 of Chapter II of [HS53] for more details.
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Now that we have a filtration on C∗(G,B), we have a spectral sequence. By Theorem 3, there is a 1st
quadrant spectral sequence, starting at r0 = 1, converging to the cohomology module H∗(G,B). Below we
compute the first and second pages of the spectral sequence so we can compute the short exact sequence of edge
terms from Proposition 2.

Given p, q ≥ 0, then F pCp+q consists of cocyles f ∈ Cp+q(G,B) whose values f(γ1, . . . , γp+q) depend only
on γ1, . . . , γq and the cosets γq+1, . . . , γp+q. Thus we can restrict the first q arguments to K to obtain a map
(G/K)p → Cq(K,B). We describe this map more precisely below.

Given a fixed choice of coset representatives for G/K, we have a (set theoretic) section G/K → G which we
denote by x 7→ x∗. We only require that the identity K ∈ G/K lifts to the identity in G, i.e. K∗ = 1. With
this choice of representatives we can define

rp : F
pCp+q −→ Cp(G/K,Cq(K,B)) with f 7→ rpf : G/K × · · · ×G/K︸ ︷︷ ︸

p times

→ Cq(K,B)

where given x1, . . . , xp ∈ G/K, the cochain rpf(x1, . . . , xp) ∈ Cp(K,B) is defined as:

rpf(x1, . . . , xp)(k1, . . . , kq) = f(k1, . . . , kq, x
∗
1, · · · , x∗p).

Since the last p arguments of f ∈ F pCp+q depend only on their class modulo K, then rpf clearly does not
depend on the the section x 7→ x∗. Furthermore, since we chose K∗ = 1, then rpf is also normalized. The
definition of rp is level-wise so it immediately upgrades to a homomorphism on F pC.

Next, we show that rp factors through F
p+1C ⊆ F pC. If f ∈ F p+1C of level p+1+q, for some q ≥ 0, then we

can view f as an element of F p+1C(p+1)+q ⊂ F pCp+q+1. Thus, for any k1, . . . , kq+1 ∈ K and x1, . . . , xp ∈ G/K,
we have

rpf(x1, . . . , xp)(k1, . . . , kq+1) = f(k1, . . . , kq, kq+1, x
∗
1, . . . , x

∗
p).

Notice that the values of f ∈ F p+1Cp+q+1 depend on the first q arguments and the cosets of the last p + 1
arguments. In particular, f depends on the coset kq+1K = K so we can substitute kq+1 with 1 to obtain

rpf(x1, . . . , xp)(k1, . . . , kq+1) = f(. . . , 1, . . .) = 0

since f is normalized. Thus the restriction map rp induces a homomorphism

rp : gr(C
∗(G,B))p = F pC/F p+1C −→ Cp(G/K,C∗(G,B)).

Next, we show that these restriction maps rp commute with the differentials. More precisely, if we write
the differentials of C∗(G/K,C∗(K,B)) and C∗(K,B) as δG/K and δK respectively, then we have the following
lemma.

Lemma 7. Given f ∈ F pC, then for any x1, . . . , xp ∈ G/K, we have

rp(δG/Kf)(x1, . . . , xp) = δK(rpf(x1, . . . , xp)).

In particular, rp induces a homomorphism on cohomology

rp
∗ : Hp+q(F pC/F p+1C) −→ Cp(G/K,Hq(K,B)).

Proof. Follows from the definition of the coboundary maps and the definition of F pC. Maybe I’ll add a proof
later...

In fact, more is true

Theorem 8. (Hochschild-Serre) The map rp
∗ above is an isomorphism.

Thus, if E = (Ep,qr )r≥1 is the spectral sequence attached to the filtration F pC, given by Theorem 3, then

Ep,q1 = Hp+q(gr(C∗(G,B))p) = Hp+q(F pC/F p+1C) ∼= Cp(G/K,Hq(K,B))

Since passing to the second page is just “taking cohomology”∗, then we have

Ep,q2
∼= Hp(G/K,Hq(K,B)).

Thus we can compute the exact sequence of edge terms.

∗This requires much more work since one must also compute the differentials on the first page, which Hochschild and Serre do
in §4 of Chapter II of [HS53]
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Corollary 9. We have the following exact sequence,

0 H1(G/K,BK) H1(G,B) H1(K,B)G/K H2(G/K,BK) H2(G,B)inf res t

where inf and res are the usual inflation and restriction maps.

Remark. The map t is called transgression and it is the differential map δ0,12 : E0,1
2 → E2,0

2 of the spectral
sequence attached to the Hochschild-Serre filtration on C∗(G,B). The proof of Theorem 3 gives an explicit
description of the differentials because the construction of these differentials is based on Lemma 13 which tells
you precisely what the isomorphism is. Let us work though these definitions.

Set r = 2, p = 0 and q = 1. In the proof of Theorem 3, cf. equation (17), we defined δ0,12 as the composition

E0,1
2 =

Z0,1
2

B0,1
2

Z0,1
3

Z0,1
2

B2,0
3

B2,0
2

Z2,0
2

B2,0
2

= E2,0
2

modZ0,1
3 /B0,1

2 d0,12

...

We arrive at the following description of the transgression map... (incomplete)

Example. We can use the Hochschild-Serre spectral sequence to compute the cohomology of dihedral groups
quite easily. Here we just compute the cohomology with coefficients in Z (with the trivial action). This can be
done easily since the cohomology of cyclic groups can be computed directly from the derived functors approach;
in fact, there is an explicit free resolution of Z that is 2-periodic. Here we just quote the computation: let Cn
be a cyclic group of order n, then

Hn(C,Z) =


ZCn = Z if n = 0

Z[n] = 0 if n is odd

Z/nZ if n is even

Lets consider the case when n is odd, and the dihedral group G = D2n. We know that G, is the extension

1 Cn D2n C2 1.

Thus the exact sequence of edge terms for G = D2n and K = Cn is

0 H1(C2,Z) H1(D2n,Z) H1(Cn,Z)C2 H2(C2,Z) H2(D2n,Z)

0 0 H1(D2n,Z) 0 Z/2Z H2(D2n,Z)

5 The Euler Characteristic of a Group

Classically, the Euler characteristic of a topological space X is given by the alternating sum

χ(X) :=

∞∑
i=0

(−1)irk(Hsing
i (X))

where each term βi := rk(Hsing
i (X)) is the ith Betti number. This gives us a template to define the Euler

characteristic of a group.
Firstly, given an abelian group A, we define the rank of A as the cardinality of a maximal Z-linearly

independent subset of A. This definition is not very actionable, so we describe it in a different way. Let Ator

denote the torsion subgroup of A. Since A/Ator is a torsion-free Z-module (Z being a PID), it is a free abelian
group, so A/Ator

∼= Zr for r = rk(A). Since Q is a flat Z-module, then tensoring the short exact sequence
0 → Ator → A→ A/Ator → 0 with Q yields the short exact sequence

0 Ator ⊗Z Q︸ ︷︷ ︸
=0

A⊗Z Q A/Ator ⊗Z Q︸ ︷︷ ︸
∼=Qr

0

Thus rk(A) = dimQ(A⊗Q). This argument also shows that the rank of an abelian group is additive, that is, if

0 A′ A A′′ 0
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is a short exact sequence of abelian groups, then

rk(A′)− rk(A) + rk(A′′) = 0

since the same is true for vector spaces. Furthermore, if we have a finite filtration A = A0 ⊇ A1 ⊇ · · · ⊇ An ⊇ 0,
then repeated applications of this principal gives

rk(A) = rk(A0)

= rk(A0/A1) + rk(A1)

= rk(A0/A1) + rk(A1/A2) + rk(A2)

= rk(A0/A1) + rk(A1/A2) + rk(A2/A3) + rk(A3)

Continuing in this manner, one concludes that

rk(A) =

n∑
i=0

rk(Ai/Ai+1) =

n∑
i=0

rk
(
grp(A)

)
(23)

This motivates the following definition.

Definition 11. Let A = ⊕An be a graded abelian group such that each An is finitely generated. The Poincaré
series attached to A is defined as the formal power series

P (A, t) :=

∞∑
n=0

rk(An)t
n.

The Euler characteristic of A is defined as

χ(A) := P (A,−1) =

∞∑
n=0

(−1)nrk(An)

whenever this series converges.

Remark. If E = ⊕Ep,q is a bigraded abelian group, we extend the definition of Poincaré series and Euler
characteristic as follows:

P (E, t) :=

∞∑
n=0

(−1)nrk

( ⊕
p+q=n

Ep+q

)
and χ(E) = P (E,−1).

Example. If A = H∗(X) is the singular homology of a space X, then we recover the usual definition of the
Euler characteristic of a topological space.

Example. Let A = Q[x], then An = Qxn as rank 1. Therefore

P (A, t) =

∞∑
n=0

tn =
1

1− t
,

However, the sum P (A,−1) does not converge, though one could facetiously say that χ(Q[x]) = 1/2.

Usually, we will be interested in computing the Euler characteristic of differential graded groups. This extra
structure is essential for our computations. The key observation in this regard is the following lemma.

Lemma 10. Let A = ⊕An be a graded abelian group with a differential δ : A→ A. Then

χ(A) = χ(H∗(A)).

Proof. For each n ≥ 1, the differential δn : An → An+1 induces an isomorphism An/ ker δ
n ∼= im δn. Since the

rank is additive, then
rk(An) = rk(ker δn) + rk(im δn).

Furthermore, Hn(A) = ker δn/im δn−1, so

rk(ker δn) = rk(Hn(A)) + rk(im δn−1)

If we plug this into the the first equation, we get

rk(An) = rk(Hn(A)) + rk(im δn−1) + rk(im δn).
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Therefore

χ(A) =

∞∑
n=0

(−1)nrk(An)

=

∞∑
n=0

(−1)n
(
rk(Hn(A)) + rk(im δn−1) + rk(im δn)

)
= χ(H∗(A)) +

∞∑
n=0

(−1)n
(
rk(im δn−1) + rk(im δn)

)
= χ(H∗(A))

since the left over series is telescopic.

This Lemma gives us a way to compute χ(A) using spectral sequences as follows. Suppose we have an
admissible group A and thus a spectral sequence E = (Ep,qr ) converging to H∗(A). Fix a positive integer n.
Since the spectral sequence is 1st quadrant, then we know that the filtration on Hn(A) is finite and of the form

Hn(A) ⊇ Hn(A)1 ⊇ · · · ⊇ Hn(A)n ⊇ 0,

and the convergence of the spectral sequence tells us that

Ep,n−p∞
∼= gr(Hn(A))p.

Thus equation (23) implies

rk
( ⊕
p+q=n

Ep,q∞

)
=

n∑
p=0

rk(Ep,n−p∞ ) =

n∑
p=0

rk(gr(Hn(A))p) = rk(Hn(A))

and thus

χ(A) = χ(H∗(A)) =

∞∑
n=0

(−1)nrk(Hn(A)) =

∞∑
n=0

(−1)nrk
( ⊕
p+q=n

Ep,q∞

)
= χ(E∞)

where E∞ is the bigraded abelian group ⊕p,q∈ZE
p,q
∞ . Furthermore, since the spectral sequence is 1st quadrant,

then we know that Ep,qr
∼= Ep,q∞ for r sufficiently large, thus

r > max{p, q + 1} =⇒ χ(Er) = χ(Er+1) = · · · = χ(E∞) = χ(A).

We record this result.

Proposition 11. Let A be an admissible group. Let E = (Ep,qr ) be a 1st quadrant spectral sequence converging
to H∗(A). Then

Miscellaneous

Proposition 12. Let M be an R-module. Suppose that M = M0,M1,M2, . . . is a sequence of succesive sub-
quotients, that is Mn+1 is a subquotient of Mn. Then there exist two sequences B1, B2, . . . and Z1, Z2, . . . of
submodules of M such that

(i) B1 ⊆ B2 ⊆ B3 ⊆ · · · ,

(ii) Z1 ⊇ Z2 ⊇ Z3 ⊆ · · · ,

(iii) Bi ⊆ Zj for any i, j ≥ 0,

(iv) Mi
∼= Zi/Bi.

Proof. Since M1 is a subquotient of M , then there are submodules, say B1 and Z1, of M such that B1 ⊆ Z1

and M1
∼= Z1/B1. Next, since M2 is a subquotient of M1, there exists submodules Z ′

2, B
′
2 ⊆ M1 such that

M2
∼= Z ′

2/B
′
2. By the Correspondence Theorem, these two correspond to submodules Z2 and B2 of Z1 that

contain B1, i.e. Z
′
2 = Z2/B1, B

′
2 = B2/B1 and M2

∼= Z ′
2/B

′
2 = (Z2/B1)/(B2/B1) ∼= Z2/B2. Thus we have

B1 ⊆ B2 ⊆ Z2 ⊆ Z1 ⊆M and M1
∼= Z1/B2, M2

∼= Z2/B2.

Continuing in this manner, we obtain the proposition.
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Lemma 13. Suppose we have a commutative diagram of abelian groups

C

A′ A A′′

ϕ
ψ

ϕ′ η

whose bottom row is exact. Then η induces an isomorphism imϕ/imϕ′
∼−→ imψ.
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