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Introduction

Newton’s method for approximating the zeros of a smooth function f : RrightarrowR
says that, given an initial guess zy € R, the sequence of real numbers

f'(zn)
converges to some nearby root of the equation f(x) = 0. The idea is that each

Zp is the root of a polynomial approximation of f. In Newton’s case, these
approximations are the partial sums of the Taylor series:

Tn4l = Tp —

/" (0)

21 x2—|—,....

filz) = £0),  fa(x) = fO)+ £ (0)z,  fa(x) = £(0)+ f'(0)x+

The error ex(z) = f(x) — fn(x) is a function that vanishes to order N around
0. That is, it is an element of the Nth power of the maximal ideal

m = {g : RrightarrowR | g(0) = 0}

of the ring of smooth real-valued functions C*°(R). The sequence of ideals m D
m? D m3 D - contains the sequence of errors of each successive approximation.
Newton’s method works precisely because

en(z) = Z ka cm”.

k!
k>N

Thus we are tempted to declare that the sequence of approximations {fy}
converges to f because each approximation becomes better and better, or in
other words: for larger N, the ideal m" gets ‘smaller and smaller’ because any
function f. € m” produces very small perturbations of an arbitrary function f
around a sufficiently small neighbourhood of 0, i.e. f+ f. = f locally around 0.
In metric spaces it is clear what convergences means because we can actually
measure how small these errors are.

We should note that in C°°(R), these polynomials don’t always converge,
or they can converge to a different function then the one we started with. For
example the Taylor series of f(z) = e~/ 2 is identically zero. However, if we
restrict our attention to polynomials, then Newton’s Method works perfectly
from this perspective.

So how can we apply Newton’s method to other rings A7 For example
how do we apply Newton’s method to Diophantine equations, that is roots of
polynomials in Z[z] or Z[z1,...,z,]? Clearly not every polynomial in Z[z] has
roots in Z, but maybe we can still approximate these roots by defining a suitable
topology on 7Z that makes Newton’s method always converge.

It’s very probable that questions like these motivated Kurt Hensel (1861-
1941) to introduce the p-adic integers. He wanted to approximate the roots
of polynomials with integer coefficients by reducing mod p™ for successively
larger powers of some suitable prime number p. We will see (cf. Section 4)



that Newton’s Method is very closely related with Hensel’s Lemma and how it
is used to approximate the roots of a polynomial.

Hensel’s methods generalized Newton’s so that they could be applied to
commutative algebra and algebraic geometry where Hensel’s Lemma proves to
be a central theorem for studying complete rings. The crossover between real
analysis and algebra, created by Hensel’s Lemma, is what allowed Irvin S. Cohen
(1917-1955) to mine Hensel’s Lemma and classify complete local rings [1, Part
11, pg 70-85]. Cohen also classified complete regular local rings [1, Theorem 17,

pg 92.

In Section 1, we will study filtrations and how they allow us to define topolo-
gies on a ring A so that we may speak of convergence. Once this has been settled,
in Section 2, we define the completion of a ring. Next we prove Hensel’s Lemma
in Section 3. In the last section, we study the first applications Hensel made
with his lemma and later we exhibit a special case of The Cohen Structure
Theorem which can be directly proven with Hensel’s Lemma.

1 Filtrations

Notation: Unless otherwise specified, M will be an A—module and 9t = mg D
m; D my O --- a descending chain of submodules of M.

Definition 1. Let I < A. An [-filtration of M is a decreasing sequence of
submodules
DJTI:{mn}:M:mODmleQD~-~

which satisfies Imy, C my; for all k¥ € N. The filtration {m, } provides the
abelian group (M, +) with the induced topology:

T(M;) :={UC M| f+m, CU for some f € M and n € N},

called the M;-topology of M = (M,9;). This topology makes M into a topo-
logical group.

Most commonly, the filtration 2t; will be the sequence of powers of an ideal
I of some ring A; we call

Z: ID>I?P2FB>...

the I — adic filtration of A and 7(Z), its associated topology, is called the
I — adic topology of A. The basis for this topology is the set of cosets f+ I™ for
all the f € A and n € N. More precisely, if A 5 A/I™ is the natural projection,
then the basis for the I—adic topology is the set of all the preimages v, 1[f] C A.
First we verify that (M, 7(91;)) is indeed a topological group. Consider the
operation maps:
MxMESM and M= M



Let U = f+my be a basic open set, and (g, h) € (+) 1 [{U] € M x M; note that
this implies g +h — f € my. An open neighbourhood of (g, h), inside (+)~}[U],
is the basic open set (¢ + mpy) x (h+ my) because g + h+my = f + my. To
verify that the inversion function f — —f is continuous, simply observe that
the inverse image of U, namely —U = — f + my is a basic open set.

Since M is a topological group, we can describe its basis via the translation
maps 0 — f for all f € M. Since translations are homeomorphisms, every
basic open set f + my is homeomorphic to 0 + my = my via the translation
0 — —f. Thus when studying the 9t;-topology we need only consider the open
neighbourhoods of 0, i.e. R(0) ={U €7, |0 € U}.

By definition of an I-filtration, we only require that Im, C m,,, but if
equality is achieved for all sufficiently large n, then we say that the I-filtration
9 is stable. For example the I-adic filtration of a ring A is stable since I(I") =
It for all n € N. In general the [-filtration 90t; = {I"M} is stable; we also
call this the I-adic filtration of M.

A very important property of stable I—filtrations is that the induced topol-
ogy on M depends only on I and not on the specific descending chain my D
my; D my D ---. More precisely:

Proposition 1. Let M; = {m,,} and M} = {m/,} be two stable [-filtrations of
M. Then they have bounded difference, that is: there exists an integer k such
that

m . Cm, and myy Cm, VneNlN

Therefore the 9M;-topology and the M-topology are equivalent.

Proof. First we reduce the problem. Since ‘being of bounded difference’ is tran-
sitive among I-filtrations (simply take the sum of both integer bounds) we may
assume that one of the stable I-filtrations, say O, is {I"M}.

Since M is an [-filtration, then I'm,, C m,; so that inductively we have
I"M = I"my C m,, for all n € N. Now, since 9; is stable there is an integer k
such that I'm,, = m,; for all n > k, so that by induction we have m,,;; = I"my
for all n. Putting this together we conclude:

Mypp = 1"mp C I"mg=I1"M and I""*M C I"M Cw,

So that k is the bound for the difference between {m,} and {I"M}.

Both topologies are equivalent because any open set U of the 91;-topology
contains some coset of m,,, but by bounded difference it contains some m;, ,; so
that U is open in the 9t)-topology.

The proof of this proposition allows us to observe two facts. First, the
property of being stable implies that the integer k from which the I-filtration 21,
stabilizes is the same bound for the difference between itself and the prototypical
I-filtration {I"M}. Secondly, and more importantly, any stable I-filtration
defines the same topology as the I-adic filtration, so that we may define the
I-adic topology of M to be the topology induced by any stable I-filtration of
M. Thus whenever M is said to have the I-adic topology, then we mean that M



is equipped with some stable I-filtration who induces this topology; in general
we will take this filtration to be the [-adic filtration. Because of this, we will
suppress the term ‘adic’ and simply call them I-topology /filtration.
We can follow this result further. If we have an I-filtration 9t; of M and
N < M any submodule, then we can restrict 9t; to N to produce the restriction
filtration:
mj‘]v = {Nﬂmn}

which is also an [-filtration. If the original filtration 90t; was stable, there are
conditions for which the restriction filtration is also stable; these are given by
the celebrated Artin-Rees Lemma:

Proposition 2. (Artin Rees Lemma) Let M be a finitely generated A-module
over a noetherian ring and 9t a stable I-filtration. Then for all submodules
N < M, the restriction filtration 9|y is a stable [-filtration of N.

An immediate consequence of this result is that the I-topology of N is the
subspace topology of the I-topology on M. To prove the Artin-Rees lemma we
must characterize the property of being stable with the help of graded modules.

Lemma 1. Let M be a finitely generated A-module over a noetherian ring and
M = {m,} an I-filtration. If we denote by

A* = é]” and M* := émn
n=0

n=0

for the graded ring A* and the graded A*-module M*, then:
M is a stable I-filtration <=  M" is a finitely generated A*-module.
Proof. First we observe that the subgroup
Np:=mg®m &---dm,
of M* generates the following A*-submodule of M*:
M= (Ny) e =meOmy @ ®&m, & Im, ® *m, &

n

which is a finitely generated A*-module. Since Im,, C m,i; by definition,
these submodules form an ascending chain that stabilizes simultaneously with
the noetherian condition. This chain stops if and only if M* = M5, for a
sufficiently large N € N which is equivalent to my4, = I"my (that is the tail
of MY, coincides with the tail of MM*) which is another way to write the definition
of the stability of an I-filtration. Thus the lemma follows. O

Now we turn to the proof of the Artin-Rees Lemma:

Proof. (of Proposition 2) Since {N Nm,,} is an I-filtration of N it defines N*, a
graded A*-submodule of M*. On the other hand {m,,} is a stable filtration, so
that Lemma (1) guarantees that M* is a finitely generated A*-module. We also
know that A* is a noetherian graded ring because A is noetherian. We conclude
that M™* is noetherian so that N* is finitely generated; by Lemma (1) again we
conclude that {N Nm,} is a stable I-filtration of N. O



We end this section by putting together these results:

Proposition 3. Let M be a finitely generated module over a noetherian ring
A and let N be a submodule. Then the I-topology of N is equivalent to the
subspace topology induced by the I-topology of M, in general, both I-filtrations
{I"N} of N and {(I"M N N)} of M have bounded difference.

2 Completions

Now that we have an adequate topology we can start generalizing Newton’s
method and the Inverse Function Theorem by rigorously defining what it means
for a sequence {f,} to converge to an element f. We use the general definition
of convergence in a topological space, particularly the topological group M with
the I-topology induced by some stable I-filtration ; = {m, }. We will regard
the decreasing chain mg O m; O --- as decreasing in ‘size’ in the I-topology.
With this in mind we can now define what it means for a sequence to arbitrarily
approximate something.

Definition 2. Let M, as a topological group, be endowed with the I-topology
for some stable [-filtration 9 = {m,}. A sequence F = {f,} of elements
fn € M is called a Cauchy sequence if for every open neighbourhood U of zero
(i.e. U = m,), there is a sufficiently large integer N such that f; — f; € U for
all s,¢ > N. In symbols: for all U = U,, = m,, we have

fs = ft mod m, for all sufficiently large s,t € N.

Furthermore, if there is an element f € M such that f—f, € U for all sufficiently
large n we say that the Cauchy sequence converges to f.

The set of Cauchy sequences can be embedded into MY as a submodule.
Furthermore, we define the classic equivalence relation:

{fny ~{om} <= {fu—g9} —0.

We call the set of Cauchy sequences in the I-topology, modulo ~, the I-
completion of M and denote it by M = Mj;. This is again a submodule of
MY with the natural operations:

{fn} + {gn} = {fn +gn} and {fn} : {gn} = {fngn}

We can also define the completion of a module in a purely algebraic way: we
will prove that M can be obtained via an inverse limit.
Lets consider the natural projection maps

M

Vn
M —— -

fr—f+m,

and take F = {f,} to be any Cauchy sequence in M. Projecting it onto M/my
produces the sequence

M\%Hk

om (i} —— {walfi)}



that stabilizes into a constant. Indeed, by definition we have that for all U = m,,
there is a sufficiently large N such that fs = f; mod m, for all s,¢ > N, thus the
sequence v, ({fx}) € M/m,, is constant after the Nth term, say d,(F) € M/m,,.
We therefore have a family of homomorphisms:

—~ 6
{1 == 3}
™ JneN

that induces the following maps:

M 2o A Py M F={fa} — {62(F)} — 6,(F).

Since 6, ({fr}) is the constant to which 7, ({fr}) stabilizes we have that
0n({fr}) = va(fn) = fn + m, for some sufficiently large N = N(n) € N.
Similarly, d,4+1({fx}) = vn+1(fN) = fv +mp41 where we may take the same N
without loss of generality. With this notation and given the natural projection
maps:

0
M n+1 M
— o fH+my g —— f4+m,

we can easily prove that:

9n+1(5n+1({fk})) = 9n+1(fN +mn+l) = fN +m, = 6n({fk})

or equivalently, we have the following commutative diagram:

- Snt1 M
M Myl
o 8
M
my

By the third Isomorphism Theorem, the family {M/m, } of quotient groups,
together with the family of group homomorphisms:

{ M On+1 M}
Mpt1 my neN

form an inverse system so that the canonical nature of the definition of the d,’s
that appear in (1) strongly suggests that M is the inverse limit of the quotient
groups M/my,:

M = lim — (2)

m,

To formally prove (2) we only need to prove that M has the universal prop-
erty of the inverse limit. To this end, let N be another A-module together with



a family of homomorphisms {7, } compatible with the {6}, that is they satisfy
the following commutative diagram:

NMn+1

mn+1
\ l n+1

For an arbitrary g € N, let f,,(g) be a preimage of 1, (¢) in M, that is f,(g) +
m,, = 1,(g) and similarly for f,,4+1(g), then the third isomorphism law and the
above commutative diagram tell us that:

On+1(Mnt1(9)) = n+1(fn+1( )t mni1) = fri1(g) + my,
nn(g) = ( ) +my,
fn(g) ( ) mod m, (3)

We can extend the above inductively to conclude that f; = f; mod m™ for
all sufficiently large s,t. It follows immediately that the sequence {f,(g)} is
Cauchy.

Now we define the map NV %5 M that simply sends g to the sequence ¢(g) =
{fn(g9)}. The election of f,(g) € M does not affect ¢ because if {f} (g)} is any
other choice then {f,(g)} ~ {f}} because f, — f/ € m™ for all n.

Lastly we observe that, by definition of ¢, we have the following diagram:

N—* M

R [s-

If the above diagram were commutative then it would follow that M satisfies
the universal property of the inverse limit and we would be able to define the
completion of M as the inverse limit of the quotient groups M/m,,.

The above diagram is indeed commutative: if g € N then by (3) the Cauchy
sequence ¢(g) = {fn(g)} stabilizes to f,(g) +m, € M/m, so that §,(¢(g)) =
fn(g) = nn(g) mod m,,. We conclude that the completion of M is the inverse
limit of the quotient groups M /m,,. This way, we may define the completion of
a module in a purely algebraic manner:

Fl

Definition 3. Let M be equipped with the I-topology induced by some stable
I-filtration MM = {m,, }. The I — completion M of M is defined to be the inverse

limit:

We also say that M is I — complete if the natural homomorphism M 2 M is
an isomorphism.



The natural homomorphism M rightarrou)]\//f can be described with Cauchy
sequences too: we simply map every element f € M to the constant Cauchy
sequence {f} € M. Observe that the kernel of this homomorphism is the
intersection of all the open neighbourhoods about zero. Indeed, if a constant
Cauchy sequence {f} is equivalent to {0}, then for all open neighbourhoods U
of zero we have f —0= f € U.

Thus a necessary condition so that M can be I-complete is that the kernel:

ker(D) = (U = ﬁmn:().

oeU

Since a topological group M is Hausdorff iff {0} is closed, and clearly ker(X) =
{0}, we have the following proposition:

Proposition 4. The I-topology of M is Hausdorff if and only if Nm,, = 0 and if
M is I-complete, then M is Hausdorfl with the I-topology.

Remark. The converse is not necessarily true. It does hold true for the discrete
topology though. Indeed, in the discrete topology, the Cauchy sequences are
exactly the constant sequences. This means that if if the I-topology of M is
discrete, then M is trivially complete.

Here is another important reminder: given any two stable I-filtrations 9t
and 9V, the induced topologies on M are equivalent so that the set of Cauchy
sequences are identical thus both completions of M are isomorphic. Further-
more, M is complete with respect to 91 if and only if M is complete with respect
to M.

Now consider the I-topology and the IN-topology given by the following
(stable) filtrations:

MDOIMDIPPMDOIPM D+ and MDOINMDODIP"MOIPNMD---.

The equivalence relation of a Cauchy sequences is identical in either topology.
Because the latter filtration is a subsequence of the I-filtration, then the con-
vergence {f, — gn}rightarrow0 in the I-topology, implies convergence in the
IV -topology. Now suppose that {f,, — g, }rightarrow0 in the I'V-topology, and
let m € N. Take an integer k such that m < kN. Thus for all m, we have
fn — gn € I®N C I™ for all sufficiently large n.

We have proven that the equivalence relation of Cauchy sequences is inde-
pendent of the power of the ideal I that defines the I-completion. In particular,
if a ring A is complete with respect with an ideal I, then it is also complete
with respect to any power of I.

The inverse limit definition is immediately useful because of the following
proposition:

Proposition 5. Let

0— {4,} —{B,} — {C,} —0



be an ezxact sequence of inverse systems, that is, for all n € N we have the
following commutative diagram:

0 A, B, Cn 0
b I
0—— A,_1 —— B,_1 Ch_1 0.

If {A,} is a surjective system (i.e. each inverse system homomorphism «, is
surjective), then

0— @An — @Bn — 1&10” — 0.

is a short exact sequence. In other words, the inverse limit functor {4,} —
@An is exact.

Proof. First we embed @An into A =[] A, as the kernel of the map:
A2 A {zn} —— {&n — any1(@ni1)}

This is indeed the desired embedding because of the equivalent characterization
of the inverse limit as a subring of A modulo the equivalence relation given by
the above function. We define g and ¢ in the same manner where {3, } and
{7n} are the inverse system homomorphisms of {B,} and {C,,} respectively.
By hypothesis, for each n we have homomorphisms A, rightarrow B, rightarrowC,,
so that the induced homomorphisms

A:HAH—>B:HB,L—>C=HC”

neN neN neN

produce the commutative diagram:

0 A B C 0
la A lﬁ B l’yc
0 A B C 0.

By the Snake Lemma, we have the following exact sequence:
0 — ker(aas) — ker(8p) — ker(yo) — coker(ay) — coker(Bp) — coker(ye) — 0.
In particular, if we concentrate on the first four terms we conclude:
0—>£1LnAn—>&an—>l'&nCn (4)
or in other words, the inverse limit functor is left exact. Observe that we still

haven’t use the hypothesis that {4, } is a surjective system. Thus (4) holds in
general.

10



To finish the proof we need only prove that if {A,} is a surjective system,
then a4 is surjective so that coker(a4) 22 0 and thus (4) can be completed into
a short exact sequence. To this end, let {z,} € A.

Let y; € A; be arbitrary and choose yo2 € Ay such that as(ys) = y1—x1 € A;.
This is possible because each «,, is surjective by hypothesis. In this case

=y —a(y2) =y1— 1 a1 =11

Now choose y3 € Aj such that as(ys) = y2 — z2 € Aa, thus:

Y2 = Y2 — az(ys) = xa.

It is clear that we can inductively produce a sequence {y,} such that {y,} —
{zn}. We conclude that a4 is surjective and we are done. O

We apply this proposition to the inverse system {M/m,,} whose homomor-
phisms are the canonical projections of M/m;,;1 onto M/m,. In particular,
{M/m,} is a surjective system and the strong part of the previous proposition
applies:

Corollary 1. Let 0 — M’ — M 5 M"” — 0 be short ezact sequence of
finitely generated modules over a noetherian ring A and endow each module with
its own I-topology for some ideal I < A. Then the sequence of I-completions

0—>]\7’—>Z\7—>]T47—>0
s exact.

Proof. To be able to apply Proposition 5 to the exact sequence of inverse systems

7 M M//

0 (I FTM)NM’ " FTM T[T M] 0
M’ M M

0 (I M)YNM’ ™M w17 M] 0.

we only need to prove that the I-topology of M’ is equivalent to the subspace
topology induced by M. But this is immediate for the Artin-Rees Lemma. O

This corollary allows us to ‘embed’ the descending sequence of any stable
I-filtration into a descending sequence of submodules of the I-completion. More
precisely:

Let {m,} be a stable I-filtration of M and restrict it to some fixed my;
with the notation of the previous corollary this is M’ = my. This means that
M" = M/my and that

M
0O—my —M———0
my

11



is a short exact sequence. By Corollary 1,

~ — M
0 —my — M — — —0
my

is a short exact sequence. Thus

M _ M
~ 20 (5)

ﬁ\lN my

On the other hand, the induced I-topology on M /my is the discrete topology
because the inverse image of a singleton {[f]} € M/my under the natural
projection is the basic open set f + my. Therefore M/my is complete, so that
the right hand side of (5) reduces to M/my.

We have just proven:

Corollary 2. Let M be a finitely generated module over a noetherian ring A
with a stable I-filtration M = {m,, } together with the mduced I-topology. Then

the completion of m,, is a submodule ofM ie. m, < M and:
M _ M
m, m,

Taking inverse limits on each side we get

—
—_—  —~

M=M
or in other words: the I-completion of module M is always a I-complete.

We now turn our focus to the ring A of the A-module M. Lets consider the
I-filtration Z = {I"} in A and set A to be the I-completion of A. Since there

exists the natural A-module homomorphism A RN ﬁ, then A can be regarded
as an A-algebra. Thus we can form the tensor product:

A®a M. (6)

We already know that R .

because M is clearly a A-module. So how does (6) compare with M? The
existence of the completion homomorphism ¥ and the fact that A is an A-
algebra, imply the existence of the natural composite map

Ao M 222 A9, M —— M

we call 7. Our intuition would suggest that 7 should be the I-completion of M,
and for noetherian rings this is true:

12



Proposition 6. If M is a finitely generated A-module over a noetherian ring,
then 7 is an isomorphism, that is:

E@AM%]/\/Z.

Proof. First we observe that the case M = A follows trivially. For the general

case we first note that completion commutes with finite direct sums because if

M = M;&Ms, then the short exact sequence OrightarrowMirightarrowMrightarrowMsrightarrow0
is converted, via completion, into the short exact sequence:

0—>J\//[\1—>JT4\—>J\//[\2—>0.

Since the original short exact sequence is split, then the above sequence is also
split because inverse limits preserve direct sums, so that M = M; & M,. By
induction we conclude that completion commutes with finite direct sums.

Now let FrightarrowGrightarrowMrightarrowQ be a free presentation of
M where F and G are free A-modules of finite dimension. Hence, if we apply
the case M = A to FF = AN and G = AM we obtain:

A aF2 A AN 2 (Ag AN =2 (A)N 2 AN = F

With this in mind, lets apply 7 to the short exact sequence OrightarrowFrightarrowGrightarrowMrightar
so that we get the following commutative diagram:

A\®AF*>A\®AG*>A\®AM4>O

S SR
F G

o~

M 0.

where both left-most vertical arrows are isomorphisms. The top row is exact
because tensoring is right exact. The bottom row is exact at because of Corollary
1. This means that 7 is surjective because its composite with the previous
homomorphism A 4G —> A®4 M is equal to the composite A Q4G — M
which is surjective. One thing is left:

To prove that 7 is injective, set « € ker(7) and consider the following path
starting at z and ending at = 0, derived from the diagram chasing method:

77T
K //

z
\—l
\
| T
\

0

0

O

The preceding proposition, together with Corollary 1, tells us that the func-
tor

M}—>A\®AA

on the category of finitely generated A-modules is an exact functor or in other
words: A is a flat A-module.

13



3 Hensel’s Lemma

Before stating and proving Hensel’s Lemma, we will apply our previous results
to local noetherian rings (A4, m, k). We want to find out what can be said about
the m-completion of a local noetherian ring.
Since A is noetherian, m is finitely generated so that Proposition 6 applies
and R
A, m=m

is an isomorphism whose image in A is mA. Thus a is the extension of m in
A under the natural completion map ArightarrowA. Thus Corollary 2 implies
that:

p-tad
m m

so that f is a maximal ideal of A. It will turn out the m is A’s only maximal
ideal.

To this end we will prove that m is contained in the Jacobson Radical of A
which is equivalent to proving that A is a local ring with maximal ideal m. We
use the characterization [2, proposition 1.9, pg 6]:

-~

z € Jac(A) < 1—ay is a unit for all y € A.

Let 2 € m and y € A. By long division we have:

1
1 -2y

=14ay+ a2+ 2%+

thus the sequence {1+ --+z"y"} is Cauchy in the m-topology because z" € m".
Thus it converges in A to the inverse of 1 — zy so that it is a unit. Now we

conclude m C Jac(A). We have proven that (A, m, k) is a local ring.
Now consider the natural map ArightarrowA and its kernel

The subspace topology of H has only one open neighbourhood of 0, namely H.

On the other hand, the Artin-Rees Lemma states that this subspace topology

is the m-topology of H as an A-module. This means that the m-topology of H

has only one open neighbourhood around 0, itself. However, mH is also an open

neighbourhood around 0 so that mH = m. Since A is local, m is equal to the

Jacobson radical of A so that Nakayama’s Lemma guarantees that H = 0.
Putting this together we have the following proposition:

Proposition 7. If (A,m, k) is a noetherian local ring, then the m-topology is
Hausdorff and its m-completion A is also a (noetherian®) local ring with maximal
ideal m and with the same residue field k. The m-topology on A is also Hausdorff.

1The proof that A is again noetherian detours away from this work and it is not used in
the proof of Hensel’s Lemma. I mention it for the sake of completeness. A simple proof can
be found in [3, Theorem 8.12 pg 61, pg]. Another proof with graded algebras is given in [2,
Theorem 10.26, pg 113].

14



Now that we have studied local noetherian rings, we are ready to state
Hensel’s Lemma in full generality. Then we sketch out a path towards the proof
through a series of lemmas. Finally, after we've proven Hensel’s Lemma, we
apply it to the various examples the illustrate the usefulness of the lemma.

Instead of beginning with Hensel’s original result, we shall prove a more
general result which exemplifies the important concepts behind Hensel’s Lemma.

Theorem 3. (Hensel’s Lemma) Let (A, m, k) be a noetherian local ring which
is m-complete, also let F' € Alx] be a polynomial of degree d. Also, lets consider
the natural projection map:

Alz] —" k[z] f—

where f is obtained by reducing its coefficients mod m. Now suppose there are
polynomials g, h € Alx], g monic, of degrees r and d — r respectively such that:

f=gh € klx]
s a coprime factorization, that is <§, ﬁ> = (1). This coprime factorization can
be ‘lifted’ to a non-trivial coprime factorization of F in Alx] of the same degrees,

that is there exist coprime polynomials G, H € Alz], G monic, of degrees v and
d — r respectively such that F = GH with G =g and H = h.

The proof will follow three steps:

1. We will establish a generalized division algorithm that will allow us to
calculate any polynomial as a linear combination of g and h. This tool
will prove useful for approximating the factorization of F' in the third step.

2. The next step is to guarantee that coprime polynomials in a ring (B/I)|x]
(for a certain class of ideals I < B) can indeed be lifted to coprime poly-
nomials in B[z]. The idea is to begin lifting g, h € (A/m)[z] to (A/m?)[z]
and then to (4/m?)[x] and so on; thus ‘approximating’ the pair of coprime
polynomials G, H € Alz] that will produce the desired factorization of F'.
We will call this method ‘Coprime Lifting’.

3. Finally, with both previous steps we construct a sequence of non-trivial
coprime factorizations of F in each successive (A/m™)[z] so that the ‘limit’
in A[z] is again a non-trivial factorization of F'; here the completeness of

A will be essential so that the limit of the factors are again polynomials
in Alx].

Now that we have established the path of the proof, we begin with step 1:

Lemma 2. (Generalized Division Algorithm) Let h € S[x] be any polynomial
in an arbitrary polynomial ring and suppose there exist g1, g2 € S[x] such that
(91,92) = (1) and also that g1 is monic of degree deg(g1) = r. Then there exists
a unique linear combination:

h = hig1 + h2go
such that deg(hs) < r.
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Proof. First observe that, since (g1, g2) = (1), then there is a linear combination
1 — Ag2 = pg1 so that g2 + (g1) is a unit in S[z]/ (g1). Furthermore, since
g1 is monic, then S[z]/ (¢g1) is a finitely generated free S-module with basis
{1+ {g1), 2+ {(g1),...,2""1 + (g1)}. This means that h + (g;) can be written

as:
r—1

ht(g) = (ska® + (g1) = (Z Skxk) +(91) »
k=0

k=0

where s € S. If we multiply each side by 1+ (g1) = g2 - (g2) ™ + (g1) we get:

h+{g1) = g2 (i(gz_l)(l‘)skxk> +(g1) -

k=0

The sum inside the parenthesis can be further reduced to a linear combi-
nation of the basis of S[x]/(g1), so that it equals ha(z) = Y sja* for some
polynomial with deg(hg) < r. We therefore have:

h+(g1) = goha + (g1) = h—g2ha € (g1),

and the linear combination h = hig1 + hags follows.
We have proven the existence of such linear combinations, so now we prove
uniqueness. Suppose

hi1g1 + hags = h = hig1 + hbgo. (7)

with deg(hg), deg(hy) < deg(g1) = r.
This equality implies that g1 (h] — h1) = go(ha — h}), or in other words,
g2(ha — h%) + (g1) = 0, but since g2 is a unit mod (g1) we conclude that

ho —hy+{1) =0 = pg1 = ho — hb for some p € S[x].

Recall that g1, being monic, is not a zero divisor in B[z] so that, if u # 0, then
pg1 = ho — hY # 0 and thus deg(ugr) > deg(g1) = r. However deg(hs — b)) <
max{deg(ha),deg(h})} < r since deg(hs), deg(hy) < r by hypothesis; but this is
a contradiction so that 4 = 0 and we conclude that he = h}. To finish the proof,
we substitute this last equality in (7) to obtain: g1(h} — h1) = 0 and because
g1 is monic, we may cancel it out to conclude that h; = h} for i = 0, 1. O

Remark. Lemma 2 is called the Generalized Division Algorithm because it re-
duces to the usual division algorithm if we set go = 1.

Lemma 3. (Coprime Lifting) Let S = R/I for some ideal I < R contained
in Jac(R) and set g1,g2 € S[x] as before, i.e. {g1,g2) = (1) with g1 monic of
degree r. If G1 and Gy are any preimages of g1 and go in R[x] via the natural
projection w : R[x] — S[x] such that Gy is monic, then G1 and Ga are also
coprime. In symbols we have

(m(G1),7(G2)) = {g1,92) = (1) and Gy is monic = (G1,G2) = (1) = R[z].
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Proof. We will prove that no maximal ideal m < R[z] contains both G; and Gs.
So let m < R[x] be a maximal ideal such that G; € m. Now, the ring R[z]/ (G1)
is an integral extension of R via the composite map RrightarrowR[z|rightarrowR][z]/ (G1);
this is because G is monic and (as before) R[z]/ (G1) is a finitely generated R-
module, so that it is generated by finitely many integral elements [4, Corollary
4.5, pg 122].

In an integral extension, maximal ideals contract to maximal ideals [2, Corol-
lary 5.8, pg 61]. Therefore the maximal ideal m/(G1) contracts to a maximal
ideal n = RN m of R. Since [ is contained in the Jacobson radical of R, in
particular it is also contained in n. With this in mind, we extended n to R[z]
via the natural inclusion RrightarrowR[z] so that

IR[z] = I[z] CuR[z] C m.

Thus we may safely extend m to S[z| & R[z]|/I[z] as m/I[z] which again is
maximal. Furthermore, we know that g1 = G; + I[z] € m/I[z].

Now, if G2 € m we would also have go = G3 + I[z] € m/I[z], but this
is a contradiction because (g1,g2) = S[z] which would imply that m/I[z] =
R[z]/I[x] so that m = R! Therefore G ¢ m and we're done. O

Lemma 4. (Approzimations of Factorizations) Let (A,m,k) be a noetherian
local ring and F € Alx] any polynomial of degree d. Suppose there are poly-
nomials g,h € Alx] of degrees v and d — r respectively, with g monic such
that: f = gh € k[z] where (g,h) = (1). Then there exists two sequences of
polynomials {g,} and {h,} in A[z], each bounded by degree: deg(g,) < r and
deg(hy) < d —r, such that:

F —gyh, em™A[z] and g, =7, ﬁn Y

for all n € N, that is, the sequence of approzimations {gnhn} approaches F in
the m[z]-topology, but still induces the same factorization in klx] .

Proof. Starting with the given polynomials g, h € Alz] that induce the factor-
ization f = gh in k[z] we will construct inductively a sequence of polynomials

{9n}

g1=9¢, g2=g+e, gz=g+ei+ez, ga=g+ter+ertes,
and similarly for {h,, }:

h1=h, hao=h+6, hs=h+0d+3d2, hs=g+0d + 32+ s,

Such that each product g, h,, is a better approximation of F', more precisely, we
want:

F — gph, € m"Alz].

We also want &,,6,, € m™A[x] (i.e. they are small polynomials in the m-adic
topology) and want them of bounded degree: deg(e,,) < d — r and deg(d,,) < r
so that deg(g,) = deg(g) = r and deg(h,) = deg(h) =d —r.

17



We begin with n = 1 so that gy = g and hy = h. By hypothesis:
F—g]/{l:F—gﬁ:Oek;[x],

and thus F' — g1hy € mA[z].
Now suppose that we have constructed the nth term of the sequences:

gn=g+er+-euo1 and hy=h+08 ++ 8,

with the desired properties. That is:

F — g hy, € m™Alz] (8)
£k, 0 € mFAz] (9)
deg(er) < d—r and deg(dr) <r (10)

Observe that we have left out the necessary property: g = § mod m because
this is implied by always holds by construction of the sequences {g,} and {h,}.

Since each &, € m™A[z], then they all reduce to 0 modulo m, so that g,
reduces to g, ie. g, = g; similarly for h,. Since g and h are coprime in k[z]
we can use the Coprime Lifting Lemma to lift this factorization to (4/m"1)[z]
(by setting R = A/m™*! and I = m/m"*! in Lemma 3).

Therefore the preimages of g, and h, in (A/m"*1)[z] are coprime. We
can now use the Generalized Division Algorithm in (A/m"*1)[x] to express the
error F' — g, h,, in m"T1[z]. There exist ,,d, € A[z] with deg(e,,) < deg(gn) =
deg(g) = r that project onto the unique linear combination:

F — gnhn = enhp + 6,gn mod m™ 1, (11)

guaranteed by Lemma 2.

Furthermore, deg(d,) < deg(h,,) = deg(h) = d — r because otherwise both
sides of the above equation would have different degrees (as polynomials in
Alz]); thus the new polynomials €,, and §,, satisfy the bound for their degrees
(property (10)).

By the inductive hypothesis we also have F — g, h, € m™ A[x] (property (8)).
Then, if we project the equation (11) over m™/m"*1  then the left hand side
reduces to zero and we obtain:

0=engn + 6ph, mod m”.

Since coprimality is preserved by projection onto ideals, the projection of
the preimages of g, and h,, onto (A/m"™)[x] is also coprime. Thus, by Lemma 2,
we may write 0 € (A/m™)[x] as the trivial linear combination (each coefficient
is zero). By uniqueness the above equation and the trivial linear combination
must be equal modulo m™. Thus we conclude that

en=0=6, modm" = ¢&,,0, € m"Alx],

so that €, and d,, also satisfy property (9)
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With ¢,, and d,, we can define the next polynomials in our sequences:
gni1=9g+e1+-+ep=9gn+éen and hypy1=h+d+---+ 6y = hy + 9y
To finish the proof by induction, we need only prove property (8). Indeed:

F —gni1hni1 = F — (gn +&n)(hn + 0n) = (F — gnhn — gndn — hnen) — €ndn.

By equation (11), the sum inside the parenthesis is an element of m"*1A[z].
Furthermore, since ,,d, € m"Alx] then their product will certainly be an
element of m"*1. We may therefore conclude that F — g, 1h,41 € m™t! and
with this the induction is over. O

We are now ready to prove Hensel’s Lemma:

Proof. (Hensel’s Lemma) First we must observe that while A is m-complete, it
is not necessarily true that Afx] is m[z]-complete. However not all is last.
Let

{an(z Z ;07

be a Cauchy sequence in Alx] where every element has degree bounded by d.
Observe that this sequence induces d+ 1 sequences in A, one for each coefficient:

{an,j }nEN CA.

Since {g,} is Cauchy in the m[z]-topology, for all N € N then ¢, — ¢; € mV[z]
for all sufficiently large s,t. More precisely, if we fix N € N and write:

d
s(x) — q(x Zaw at,j)@
7=0

we immediately see that g, — ¢; € m™¥[z] for sufficiently large s, ¢ is equivalent
to (as; —az ) € m¥ forall j =0,1,...,d and for all sufficiently large s,¢. Thus
each sequence {a,_; }nen is Cauchy in A.

By hypothesis, each sequence converges:

lim a,; =a;

n—oo
for some ag,ay,...,aq € A which then implies
{an7dajd+ o Fanot — agz® + -+ ag. (12)

We’ve proven that any Cauchy sequence in Afz] of bounded degree converges
provided A is m-complete. This is why the upper bound for the degree in Lemma
4 is necessary. We continue with the proof:
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Let {g»} and {h,} C Alz] be the sequences of polynomials given by the
previous lemma. Since F — g,h, € m"™A[z] for all n, then clearly:

0= lim (F — gnhy) = F — ( lim gn) ( lim. h) (13)

n—oo n—oo n—

in the m[z]-topology. On the other hand we know that:
gn=9g+ter+ez+ - +eén

where each summand ¢; € m/A[z]. Thus by construction, g, is a Cauchy
sequence in A[z] because for sufficiently large s > ¢:

s — g =6t + - +es_1 €mz] + - +m*z] Cmiz] Cm"[x]

for all n € N. By the previous lemma we also have that this sequence is of
bounded degree, so that g, converges to some G € Alz] of degree < r. Also,
since each g, was monic of degree r, then the limit is also monic of degree
r; this follows from equation (12). On the other hand {g,} = {g} C k[z] by
construction, so that the limit also projects onto g, that is G= g in k[z].

Similarly, {h,} converges to some H € A[z] of degree d—r such that H = h.
This means that G, H € k[x] satisfy the Lifting Lemma and thus are coprime
in A[z]. Finally we substitute the limits in (13):

F=GH.

We conclude that lim g, = G and lim h,, = H satisfy Hensel’s Lemma. O

4 Applications

Theorem 3 is not Hensel’s original statement of his Lemma. He began working
on the p-adic integers, i.e. the pZ-completion of Z, in the 1890’s (for example
[5]). And unified is work on the p-adic integers and his lemma in 1908 with
his book Theorie Der Algebraischen Zhalen [6, Chapter 4]. Throughout his life
he published many versions of his lemma which makes it hard to pin point the
original statement, but one of the original motives for his work on the p-adic
integers was to solve polynomial equations mod p™ for some prime power.

Hensel realized that a root to a polynomial f(x) with integer coefficients
could be approximated by the roots of f(z) mod p™ for higher and higher pow-
ers of a suitable prime p. To this end, he would lift simple roots of f mod p"
to simple roots of f mod p™*t!, thus creating a sequence of numbers that ap-
proached the desired root.

To rigorously define ‘approach’ he introduced the p-adic measure in Q and
began using the powerful tool of Analysis in Number Theory. In 1913, Hensel
published a text book on Number Theory where he carefully lays out his theory
of the p-adic integers [7]. The p-adic measure induces the p-topology on Q
as a Z-module, so that we have simply generalized his ideals to Commutative
Algebra and Topology.
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Once his p-adic measure was established, the sequence of lifted simple roots
did indeed converge to the desired root. With our definition of the p-topology,
this is deduced from Lemma 3. Hensel’s statement of this fact can be distilled
as follows:

If f € Z]z] and a € Z is a simple root of f mod p”, that is

f@=0 modp” and f'(a)#Z0 mod p,

then there exists an integer b such that f(b) =0 mod p"*! and a = b mod p™.
A short an elemental proof of this statement can be given as follows: Let

!
a n
16 g

fla+p"z) = f(a) + f(a)p"z +

be the Taylor series of f at a+p"x. If we reduce this formula mod p"*!, then
all terms after the second one vanish so that:

fla+p"z) = fa) + f'(a)p"x mod p"*.

Let b = a + p™z. Since clearly b = ¢ mod p"”, we need only solve for = to
calculate the lifted root b. Set f(a + p"x) = 0 mod p"T!. Recall that, since
f'(a) 20 mod p, then f'(a) is a unit in Z/pZ and thus it is a unit in Z/p"Z.
This way we can easily solve for p"z:

0= fla+p™z) = f(a)+f'(a)p"z mod p"T' — paz= —}f/(((;)) mod p"*L.
This means fa)
a
0

is a simple root of f mod p™*! obtained by lifting a to a better approximation
in the p-adic topology.

The above formula is identical to Newton’s Method for approximating roots
(polynomials in this case) and the proof is identical; just switch mod p™ to
‘vanishing to order n’. The idea behind these methods is simply being able to
lift simple roots. We now state this result in our context of complete local rings:

Corollary 4. Let (A, m, k) be an m-complete local noetherian ring. Let f € Alz]
be a polynomial such that f € k[x] has a simple root ( € k, or equivalently
f(¢) #0, such that f() = 0. Then there exists a simple root £ € A of f such
that € = . In other words, it is possible to lift the simple root ¢ € k of f to a
simple root £ € A of f.

Proof. The proof is as follows, a simple root of f € k[z] will induce a factoriza-
tion of the type f = (v —()q(z) for some q € k[z] such that (z — ¢, q(z)) = k[z].
We will then be able to use Hensel’s Lemma to lift the factorization in k[x] to
a coprime factorization f(z) = (x — £)Q(x); this gives £ as a simple root of f
that projects onto the simple root ¢ of f.
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Suppose ( € k is a simple root of f € k[x]. By the division algorithm we may
right f(z) = (z —{)q(z) where ¢(¢) # 0, or equivalently: the polynomial (z — ()
does not divide ¢(z). Since x — ¢ is irreducible and k[z] is a Principal Ideal
Domain, the ideal I = (x — ¢) is maximal and since (x — {) f ¢(x) then I does
not contain gq. Thus they both generate the entire ring, i.e. they’re coprime.

We may now use Hensel’s Lemma to lift the factorization of f to f: there
exist coprime P,Q € Alx] of the same degrees as x — ¢ and g respectively, P
monic, such that f = PQ, P = (r—() and Q = q. This means that P(z) = z—¢
for some ¢ € A such that £ = ¢. Since P and @Q are coprime, P / @ so that
Q&) # 0. We may now conclude that f = PQ = (z — §)Q(x) so that £ is a
simple root of f such that & = C. O

A direct consequence of this lemma is the Implicit Function Theorem. We
will prove the Implicit Function Theorem for polynomials in two variables. The
proof of the general Implicit Function Theorem is a simple generalization that
requires a deeper study of power series rings in multiple variables so we omit
the proof (see for example [3, Chapter 3, Section 8] or [4, Theorem 7.16 and
Corollary 7.17]).

Corollary 5. Let f € k[x,y] for some field k. If 0f/0x # 0 at (0,a), then
there is a unique power series

y(x) = a+ ayx + apx? + azz® + - - - € k[[z]]
such that f(x,y(x)) = 0 identically.

Proof. Let A = k[[z]] and m = (z) its maximal ideal. We view f € k[z,y] as
a polynomial in y with coefficients in k[[z]], that is f € Afy]. Similarly to the
previous corollary, the hypothesis

of
%(0» a’) 7é 0

implies that a € k is a simple root of the polynomial F(y) = f(0,y) € k[y] =
(A/m)[y]; observe that making x = 0 is the same as reducing mod m in A
so that f = f(0,y) = F(y). Thus by Corollary 4 there exists a power series
g(x) € A that is a simple root of the polynomial f € A[y], that is:

fz,g(x)) = 0.
Finally, observe that g(x) reduces to & mod m (that is evaluating at x = 0),
thus its constant term is a as desired. O

Now we turn our attention to formal power series. If A is a ring, then the
ring of formal power series in d variables with coefficients in A is denoted as:

Allzy, ..., zd4]].

This ring is closely related to complete rings. Let B = Alxy,...,24] and m =
(1,...,2,) and give B the m-topology. The m-completion of B is exactly
Allx, ..., zd]].
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To prove this, first observe that the ring homomorphisms {«,, } defined as:

A[[‘rla s ,’JJdH S mnBJrl f }L f + anrl
lanﬁ—l x J{Gwﬂ (14)
B n
mn f +m

Form an inverse system that satisfies the universal property of the inverse limit.
The proof of this fact is very similar to the discussion preceding Definition 3.
Thus:

Allzy, ..., x4 ~lim A~ B (15)

We also verify this with an explicit isomorphism W: again consider the family
of maps {«a;,} which can be thought of as forgetting the terms of order greater
than n of a power series f. Together with the natural projection maps 6,, (cf.
Section 2), we have the commutative diagram (14).

This makes A[[x1, ...,z ]| and the family {a,} compatible with the inverse
system {B/m"} so that the universal property of the inverse limit implies the
existence of a unique homomorphism A[[z1, ..., zN]] — B that commutes with
the inverse system:

Allzy,...,an]] —2—— B
\ J/(Sn
Cn
B

where d,, are the inverse system homomorphisms of lim B /m,, (cf. Section 2).
Thus ¥ acts as follows:

B
f'_>(f+mvf+m27f+m37"')e ﬁ
Clearly f +m™*! projects onto f +m” so that the image is indeed an element
of the inverse limit if we consider it via the characterization of the inverse limit
as a subring of the product.

The inverse map is given by:

(fi+m, fotm? fo+m® )= fit(fo—fi)+(fs—f2) + - € Allzr,..., 2n]].

the entries of the vector (fy+m, fo+m?, fs3+m3,...) satisfy f,11 = f, mod m”
so that the nth summand is of order at least n. The choice of f,, for f,, +m™ does
not influence the function because each summand f,, 1 — f,, is constant in B/m™
and thus does not affect the image. We conclude that ¥ is an isomorphism and
equation (15) is true.

Now lets consider the case where (4, m, K) is a local ring that contains some
field k. Since each element of k is a unit in A, we have m Nk = 0 so that under
the projection A - A/m = K, the field k extends to itself:

Cktm Kk

e
F m mnNnk 0



By these means we can associate any field contained in local ring A with
a subfield of its residue field. We define a very special type of these contained
fields.

Definition 4. Let (A, m, K) be a local ring. If a field k£ C A whose associated
subfield is all of K, that is k extends isomorphically to A/m, is called a coefficient
field of A.

Coefficient fields are central to the study of complete local rings, evidenced
by the following proposition:

Proposition 8. Let (A,m, K) be an m-complete noetherian local ring and set
m = (a1,...,aq). If A contains a coefficient field k, then every element of
A can be expressed as a power series with coefficients in & with d variables,
our equivalently, there exists a surjective homomorphism k[[z1,...,z4]] - A
sending f(x1,...,24) — f(a1,...,aq). We can also state it as: every complete
local noetherian ring which contains a coefficient field is a homomorphic image
of some power series ring.

Proof. First lets assume that for every x € m”™ there exists a representation
T = Yp + Zny1 where y, is a homogeneous expression of degree n in aq,...,a,
(the generators of m) with coefficients in k and 2,41 € m"*l. Using these
representations, for all elements x € A, we will be able to construct a Cauchy
sequence of partial sums that converges to x thus giving us a power series
representation for x in aq,...,aq.

Indeed, if 2 € A = mY, there exist yo, homogeneous of degree 0 that is
Yo € k and z; € m, such that x = yg + z1. Now apply this representation to
21t 21 = Y1 + 2o with y; homogeneous of degree 1 in aq,...,aq and 2o € m?.
Repeating this argument, we can construct the following sequence:

T =yYo+ 21 = wp

T =Yo + Y1+ 22 = w2

$:y0+y1+"'+yn—1+zn::wn

where each y; is homogeneous of degree j in the generators of m and z, € m”.
By construction, the sequence {w,} is Cauchy so that the series:

o0
!/ .
= lim w, = g UYn
n— o0
n=1

converges in A because the partial sums = — 2z, € z + m"™ approach z in the
m-topology. Since A is m-complete Yy, converges to x. Also since {w,} is

the constant sequence {2} we conclude that x = yg + y; + - -- as a power series
in k[[a1,...,aq]] because each y; is homogeneous of degree j in the variables
ai,...,aq by construction.
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The only thing left to prove is that for every € m”™, there exists a represen-
tation & = y,, + 241 with the desired properties. Indeed, since m = (a1, ..., aq),
then x is a finite A-linear combination of homogeneous elements of degree n,

that is:
r=) peaf -y
withn=e; +---+e4.

Lets consider a general monomial of this expression i.e. peai® ---ag’. If pe
is an element of m, then the entire monomial is an element of m"*! because
at* ---ay’ € m™. Thus every monomial with coefficient in m is gathered into the
summand 2,41.

Now suppose that p. € m. Since A is local, p. is a unit and its image, fi,
under the projection A — K it is non-zero. Therefore there exists a non-zero
element A\, € k that projects onto fi., that is A, = fi.. This is possible because
k projects isomorphically onto K. In other words: there exists an m, € m such
that pe = Ae + me. Thus:

e edqd __ el €4 €1 €d
peayt - agt = Aeaf' - -ayt +mealt - ay

where the first summand is a homogeneous expression with coefficient in k in
ai,...,aq and the second is an element of m"™*! by the previous discussion.
We have proven that each monomial of x can be separated into a sum of
elements in m™*! i.e. 2,41, and a sum of homogeneous elements of kla1, ..., a4,
i.e. y,. Therefore x =y, + z,+1 and we are done.
O

This is the preliminary result used to prove the Cohen Structure Theorem
which was presented by I.S. Cohen in 1942 and published in 1946 [1]. This
theorem classifies complete local noetherian rings as homomorphic images of
power series. We prove the important case when A contains a field of character-
istic 0 because it is a direct consequence of Hensel’s Lemma (or more precisely
Corollary 4). When A does not contain a field, or if the field it contains has
characteristic p, then the theorem requires much more machinery than Hensel’s
Lemma. In Cohen’s article, this occupies all of Part II [1, pg 70-85].

Theorem 6. (Cohen Structure Theorem) Let (A,m,K) be a complete local
noetherian ring that contains a field of characteristic 0. Then A contains a
coefficient field so that it is a homomorphic image of the power series with coef-
ficients in the residue field K with a finite amount of variables or equivalently:

Klzy,...,24]

A I

1

for some ideal I of the power series ring.

Proof. Suppose A contains a field k of characteristic zero, so that the set:

Q:={LCA|Lisafieldand k C L}

25



is none empty. Given a chain L1 C Ly C --- in Q we may form L = L{ULoU- -
which is again a subfield of A which contains k. Thus we may apply Zorn’s
Lemma and guarantee the existence of a maximal element F' € ). We prove
that F' is a coeflicient field for A.

Suppose not, i.e. F projects onto a proper subfield of K under the map
A — A/m. We denote by F for the image of F in K and let « € K — F. We
prove that o can’t be algebraic nor non-algebraic, thus a contradiction.

1. (a is algebraic over F') Let p(x) € F[x] be its minimal polynomial where
p € F[z] is some preimage of this minimal polynomial. Since char(F) =
char(F) = 0, then « is a simple root so that we can lift it to a simple root
a € A such that @ = « and p(a) = 0. Since p € F[z] is irreducible, it is
a prime element so that its preimage p € F[z] C A[z] is also prime and
therefore (since F[z] is a Principal Ideal Domain) it generates a maximal
ideal. Thus

which contradicts the maximality of F.

2. (« is not algebraic) In this case take a € A to be any preimage of a € K,
that is @ = a. If a € A were algebraic over F', then it would be satisfy
some polynomial equation f(a) = 0 for f € F[z], but by projecting it onto
K we would obtain a polynomial equation f(a) = 0! Thus for all f € F[x]
we have f(a) # 0, or in other words, f(a) ¢ m for all f. Since A is local,
this means that f(a) is a unit for all f. We can now conclude that:

FgF(a):{‘JqCEZ%:f,gEF[m]}CA

is naturally embedded into A and thus contradicts the maximality of F'.

We must conclude that F' is a coefficient field for A, thus Proposition 8
applies and A is a homomorphic image of Flx1,...,2z4]. O
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