Étale Algebras

Alejandro De Las Peñas Castaño

December 4, 2024

1 Étale algebras

Let k be a field and choose some algebraic closure \overline{k} of k. The n-fold cartesian product $k \times \cdots \times k$ can be made into a k-algebra via the diagonal embedding.

Definition 1. (Bourbaki) Let A be a k-algebra. Then

- 1. A is diagonalizable if $A \cong k \times \cdots \times k$ as k-algebras.
- 2. A is étale if $A \otimes_k K$ is a diagonalizable K-algebra for some field K containing k.

Next we focus on the case that A is a finite k-algebra, that is, A is a finite dimensional k-vector space. Finite algebras are particularly nice. An immediate observation is that A has only finitely many maximal ideals. Indeed, if S is any finite set of maximal ideals of A, then the Chinese Remainder Theorem tells us that

$$\Phi: A \longrightarrow \prod_{\mathfrak{m} \in S} A/\mathfrak{m}$$
 defined by $a \mapsto (a + \mathfrak{m})_{\mathfrak{m} \in S}$

is surjective and hence

$$\dim_k A \geq \dim_k \prod_{\mathfrak{m} \in S} A/\mathfrak{m} = \sum_{\mathfrak{m} \in S} \dim_k A/\mathfrak{m} \geq \sum_{\mathfrak{m} \in S} 1 = |S|.$$

in other words, $|\operatorname{Specm}(A)| \leq \dim_k A < \infty$.

With this observation, we can compute the nilradical of A and compute the reduced ring A/N.

Lemma 1. Let A be a finite k-algebra with maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$, and let N be the nilradical of A. Then

$$N = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r$$
.

In particular, A/N is isomorphic to a product of r fields.

Proof. By Zorn's lemma, we know that N is the intersection of all prime ideals of A, hence $N \subseteq \cap \mathfrak{m}_i$, so we only need to prove the reverse inclusion which amounts to Hilbert's Nullestellensatz.

Since A is a finitely generated k-algebra, then $A \cong k[x_1, \ldots, x_n]/I$ for some proper ideal $I \subset k[x_1, \ldots, x_n]$ so we identify A with this quotient. Let $f \in k[x_1, \ldots, x_n]$ be such that $f + I \in A$ is in the intersection of all the maximal ideals of A, that is

$$f\in\bigcap_{\mathfrak{m}\supseteq I}\mathfrak{m}.$$

We want to show that f + I is in N, i.e. there exists a positive integer n such that $(f + I)^n = 0$ or equivalently, $f^n \in I$.

By the weak Nullstellensatz, we have that the algebraic set

$$V(I) = \{ p = (p_1, \dots, p_n) \in \overline{k}^n \mid g(p) = 0, \ \forall g \in I \}$$

is non-empty, so let $b \in V(I)$. The image R of the evaluation map

$$\epsilon_b: k[x_1, \dots, x_n] \longrightarrow \overline{k}$$
 defined by $g \mapsto g(b)$

is a subgring of \overline{k} . In fact, R is finite dimensional over k since ϵ_b factors through a surjective k-linear map $A \to R$ where A is finite dimensional by assumption. This implies that the image of ϵ_b is a field. Indeed, if $\alpha \in R \setminus \{0\}$, then the multiplication map $x \mapsto \alpha x$ is an injective k-linear endomorphism of R (notice that R is an integral domain by being a subring of a field), and hence an isomorphism which yields a multiplicative inverse for α .

Therefore, $\ker \epsilon_b$ is a maximal ideal of $k[x_1, \ldots, x_n]$ that contains I. By our choice of f, we have that $f \in \ker \epsilon_b$. We have shown that for every $b \in V(I)$, we have f(b) = 0. By the Nullstellensatz, there is a positive integer m for which $f^n \in I$, as required.

Corollary 2. Let A be a finite k-algebra with maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$. Then there is a positive integer n such that

$$A \cong \prod_{i=1}^r A/\mathfrak{m}_i^n.$$

In particular, A is a finite direct product of local rings.

Proof. Let N be the nilradical of A. Since A is noetherian (it is a finitely generated module over a noetherian ring), then N is finitely generated, say $N = \langle y_1, \dots, y_s \rangle$. For each $j = 1, \dots, s$, there is a smallest integer $n_i > 1$ such that $y_i^{n_i} = 0$. If we set

$$n := 1 + \sum_{i=1}^{s} (n_i - 1),$$

then $N^n=0$. Indeed, an element of N^n is a linear combination of monomials of the form $y_1^{m_1}\cdots y_s^{m_s}$ with $\sum m_i=n$, and by definition of n, at least one m_i satisfies $m_i\geq n_i$ so that the monomial is zero. Notice that n is the minimal exponent that does annihilates N.

By Lemma 1, we then have:

$$\prod \mathfrak{m}_i^n \subseteq \bigcap \mathfrak{m}_i^n = \left(\bigcap \mathfrak{m}_i\right)^n = N^n = 0.$$

Now, observe that for $i \neq j$, \mathfrak{m}_i and \mathfrak{m}_j are coprime. So

$$\sqrt{\mathfrak{m}_i^n + \mathfrak{m}_j^n} = \sqrt{\sqrt{\mathfrak{m}_i^n} + \sqrt{\mathfrak{m}_j^n}} = \sqrt{\mathfrak{m}_i + \mathfrak{m}_j} = \sqrt{(1)}$$

which implies that $\mathfrak{m}_i^n + \mathfrak{m}_j^n$, i.e. the factors of $\prod \mathfrak{m}_i^n$ are pairwise comprime and hence $\cap \mathfrak{m}_i^n = \prod \mathfrak{m}_i = 0$. Therefore the map $A \to \prod A/\mathfrak{m}_i^n$ is an isomorphism.

Remark 3. Corollary 2 is half of the structure theorem for Artin rings that states that an Artin ring is uniquely (up to isomorphism) a finite direct product of Artin local rings.

Corollary 4. Let A be a finite k-algebra. If A is diagonalizable, then A is reduced.

Proof. Since A is diagonalizable, then $A \cong k^n$ as k-algebras; let us write $\psi : A \to k^n$ for this isomorphism. For $i = 1, \ldots, n$, we have the projection maps $k^n \to k$ which when precomposed with ψ give us surjective k-algebra homomorphisms $\pi_i : A \to k$. In fact, $\psi(x) = (\pi_1(x), \ldots, \pi_n(x))$. Furthermore, $\ker \pi_i$ is a maximal ideal for all i. Thus, Lemma 1 implies that

$$N \subseteq \bigcap_{i=1}^{n} \ker \pi_i,$$

where N is the nilradical of A. Finally, if $x \in \ker \pi_1 \cap \cdots \cap \ker \pi_n$, then $\psi(x) = 0$ and thus x = 0 since ψ is an isomorphism. We conclude that N = 0 as required.

We now have the tools to characterize finite k-algebras.

Proposition 5. Let A be a finitely generated k-algebra. Then the following are equivalent:

- 1. A is a finite k-algebra.
- 2. A is artinian.
- 3. $\dim A = 0$.
- 4. Specm(A) is a finite discrete space.

Proof. We prove the following implications.

- $(1 \Longrightarrow 2)$ Since k is artinian and A is a finitely generated k-module, then A is artinian.
- $(2\Longrightarrow 3)$ Let $\mathfrak{p}\in \operatorname{Spec}(A)$ and let $x\in A/\mathfrak{p}$ nonzero. Since A is artinian, then so is A/\mathfrak{p} by the correspondence theorem. Thus the descending chain $(x)\supseteq (x^2)\supseteq \cdots$ stabilizes, that is, $(x^n)=(x^{n+1})$ for some n>1. In other words, $x^n=x^{n+1}y$ for some $y\in A/\mathfrak{p}$. Since A/\mathfrak{p} is an integral domain, we may cancel x^n to get 1=xy, i.e. x is a unit and hence A/\mathfrak{p} is a field. This shows that every prime ideal of A is maximal, i.e. $\dim A=0$.
- $(3 \Longrightarrow 1)$ By the Noether normalization lemma, there exists algebraically independent elements $x_1, \ldots, x_r \in A$ such that A is finite over $k[x_1, \ldots, x_r]$. Since dim A = 0, then we must have r = 0. Hence A is finite over k.

 $(1 \Longrightarrow 4)$ Let $\{\mathfrak{m}_1, \ldots, \mathfrak{m}_r\}$ be the set of maximal ideals of A. By Corollary 2, we have $A \cong \prod A_i$ where each A_i is a local ring with maximal ideal \mathfrak{m}_i , i.e. Specm $(A_i) = \{\mathfrak{m}_i\}$. Hence

$$\operatorname{Specm}(A) = \left| \operatorname{Specm}(A/\mathfrak{m}_i) = \right| \left| \{\mathfrak{m}_i\}.\right|$$

Thus Specm(A) is discrete.

 $(4 \Longrightarrow 3)$ Let $\mathfrak{p} \subset A$ be a prime ideal and suppose \mathfrak{m} is a maximal ideal containing \mathfrak{p} . By assumption $\{\mathfrak{m}\} \subset \operatorname{Specm}(A)$ is open. Then there exists $f \in A$ such that $\operatorname{Specm}(A_f) = \{\mathfrak{m}\}$. Since A_f is a finitely generated k-algebra, the Nullstellensatz implies (with a similar argument as in the proof of Lemma 1) that every prime ideal $\mathfrak{q} \subset A_f$ is an intersection of maximal ideals. But A_f has exactly one of them and hence \mathfrak{q} is maximal. Thus $\dim A_f = 0$

We can know characterize the notion of étale k-algebras.

Theorem 6. Let A be a finite k-algebra. Then the following are equivalent:

- 1. A is étale.
- 2. $K \otimes_k A$ is reduced for every algebraic extension K of k.
- 3. $A \cong K_1 \times \cdots \times K_r$ as k-algebras, where K_i is a finite separable extension of k.
- 4. $\overline{k} \otimes_k A$ is a diagonalizable \overline{k} -algebra.

Proof. We prove the following cycle of implications.

 $(1 \Longrightarrow 2)$ Let K be a field containing k. By definition, there is a field L containing k such that $L \otimes A$ is a diagonalizable L-algebra. Next, take a field F that contains both L and K (for example, one may take the quotient of $L \otimes_k K$ by some maximal ideal). Then

$$F \otimes_k A \cong (F \otimes_L L) \otimes_k A \cong F \otimes_L (L \otimes_k A) \cong F \otimes_L L^n \cong F^n$$
.

That is, $F \otimes_k A$ is a diagonalizable F-algebra; by Corollary 4, $F \otimes_k A$ is reduced. Since A is a free k-module, then it is flat. Thus the inclusion map $K \hookrightarrow F$ remains injective after tensoring with A. Thus we may view $K \otimes_k A$ as a subring of $F \otimes_k A$. Thus $K \otimes_k A$ is also reduced.

 $(2 \Longrightarrow 3)$ By assumption $A \cong k \otimes_k A$ is reduced, so its nilradical is zero so Lemma 1, tells us that $A \cong K_1 \times \cdots \times K_r$ where K_i is a field extension of k. If one of the factors is an infinite field extension, then A would be infinite dimensional, so every factor K_i is a finite extension of k.

Now, suppose that K_1 is not separable. Then necessarily, $\operatorname{char}(k) = p > 0$ and there is an element $\alpha \in K_1$ whose minimal polynomial is of the form $g(x^p)$ for some $g \in k[x]$. If we write $g(x) = g_0 + \cdots + g_{n-1}x^{n-1} + x^n$, then over the field

$$L = K(\sqrt[p]{g_0}, \dots, \sqrt[p]{g_{n-1}})$$

we have that $g(x^p) = h(x)^p$ for some $h(x) \in L[x]$; in fact $h(x) = \sum h_i x^i$ with $h_i = \sqrt[p]{g_i}$. This implies that

$$L \otimes_k k[\alpha] \cong L \otimes_k \frac{k[x]}{(g(x^p))} \cong \frac{L[x]}{(g(x^p))} \cong \frac{L[x]}{(h(x))^p},$$

which is clearly not reduced. However, $L \otimes_k k[\alpha] \hookrightarrow L \otimes_k K_1 \subset L \otimes_k A$, which would imply that $L \otimes_k A$ is not reduced. However, this contradicts our assumption.

 $(3 \Longrightarrow 4)$ Suppose $A \cong K_1 \times \cdots \times K_r$ with K_i a finite separable extension of k. By the primitive root theorem, $K_i = k[\alpha_i]$ for some $\alpha_i \in \overline{k}$. The minimal polynomial $f_i \in k[x]$ of α_i is separable, so it splits completely over \overline{k} into distinct linear factors. Thus

$$\overline{k} \otimes_k K_i \cong \overline{k} \otimes_k k[\alpha_i] \cong \overline{k} \otimes_k \frac{k[x]}{(f_i)} = \frac{\overline{k}[x]}{(f_i)} \cong \overline{k} \times \cdots \times \overline{k}.$$

Thus

$$\overline{k} \otimes_k A \cong \overline{k} \otimes_k (K_1 \times \cdots \times K_r) \cong (\overline{k} \otimes_k K_1) \times \cdots \times (\overline{k} \otimes_k K_r) \cong (\overline{k} \times \cdots \times \overline{k}) \times \cdots \times (\overline{k} \times \cdots \times \overline{k}).$$

Therefore $\overline{k} \otimes_k A$ is diagonalizable.

 $(4 \Longrightarrow 1)$ By definition.

2 Galois theory of étale algebras

Let k be a field and fix a separable closure k^{sep} and let $G = \text{Gal}(k^{\text{sep}}/k)$. A set X is a G-set if there is a group action $G \times X \to X$ that is continuous with respect to the Krull topology on G and the discrete topology on X. By definition of the Krull topology, the action is continuous if and only if for every $x \in X$, the stabilizer subgroup G_x is open in G.

Let A be an étale algebra over k. Then G acts on $\operatorname{Hom}_{k\text{-alg}}(A, k^{\text{sep}})$ as follows:

$$G \curvearrowright \operatorname{Hom}_{k\text{-alg}}(A, k^{\operatorname{sep}})$$
 with $(\sigma, f) \mapsto \sigma f$ defined by $(\sigma f)(a) := \sigma(f(a)).$ (1)

So we a G action on $\operatorname{Hom}_{k-\operatorname{alg}}(A, k^{\operatorname{sep}})$. Conversely, let X be a finite G-set. Then $\operatorname{Hom}_{G\operatorname{-set}}(X, k^{\operatorname{sep}})$ is a k-algebra where the operations are defined pointwise. Furthermore, G acts on this k-algebra as follows:

$$G \curvearrowright \operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})$$
 with $(\sigma, f) \mapsto \sigma f$ defined by $(\sigma f)(x) = \sigma(f(\sigma^{-1}x))$.

Thus we can form the fixed points $\operatorname{Hom}_{G\operatorname{-set}}(X,k^{\operatorname{sep}})^G$ of this action. Notice that

$$f \in \operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^G \iff f(\sigma x) = \sigma(f(x)) \quad \forall x \in X, \ \sigma \in G.$$

It is clear that $\operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^G$ is a k-subalgebra of $\operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})$.

Above, we have defined functors between the category of finite G-sets and the category of étale algebras. We make this statement precise and prove it below.

Theorem 7. Let k be a field, k^{sep} a choice of separable closure and $G = \text{Gal}(k^{\text{sep}}/k)$ the absolute Galois group. Let \'Et-Alg_k be the category of étale k-algebras and FinSet_G be the category of finite G-sets. Then there are functors

$$\mathcal{F}: \mathbf{\acute{E}t}\text{-}\mathbf{Alg}_k \longrightarrow \mathbf{FinSet}_G \qquad A \mapsto \mathrm{Hom}_{k\text{-}\mathrm{alg}}(A, k^{\mathrm{sep}})$$

 $\mathcal{G}: \mathbf{FinSet}_G \longrightarrow \mathbf{\acute{E}t}\text{-}\mathbf{Alg}_k \qquad X \mapsto \mathrm{Hom}_{G\text{-}\mathrm{set}}(X, k^{\mathrm{sep}})^G$

These functors define an equivalence of categories.

Proof. We break up the proof into several steps.

1. (\mathcal{F} is well-defined) First we show that the action of G on $\operatorname{Hom}_{k\text{-alg}}(A, k^{\operatorname{sep}})$, defined in (1) is continuous. To see this, we write $A \cong K_1 \times \cdots \times K_r$ where K_i is a finite separable extension of k. Then we embed $K_i \hookrightarrow k^{\operatorname{sep}}$ and take the Galois closure L of the compositum $K_1 \cdots K_r$. This is a finite Galois extension since each K_i is finite. This means that for any $f \in \operatorname{Hom}_{k\text{-alg}}(A, k^{\operatorname{sep}})$, the image f(A) lies in L, so $\operatorname{Gal}(k^{\operatorname{sep}}/L) \subseteq G_f$. Since $\operatorname{Gal}(k^{\operatorname{sep}}/L)$ is open of finite index, then so is G_f (it is the finite union of translates of $\operatorname{Gal}(k^{\operatorname{sep}}/L)$) and hence the above action is continuous.

Next, we show that $\operatorname{Hom}_{k\text{-alg}}(A, k^{\text{sep}})$ is finite. If $A = A_1 \times \cdots \times A_s$ is a product of étale algebras (which is again étale by Theorem 6), then any map $f \in \operatorname{Hom}_{k\text{-alg}}(A, k^{\text{sep}})$ must be zero on all factors except (possibly) one factor. Indeed, k^{sep} is an integral domain. Thus we have

$$\operatorname{Hom}_{k\text{-alg}}\left(\prod A_i, k^{\operatorname{sep}}\right) = \bigsqcup \operatorname{Hom}_{k\text{-alg}}(A_i, k^{\operatorname{sep}}).$$

In particular, if A is an étale algebra with $A \cong \prod K_i$, then

$$\operatorname{Hom}_{k\text{-alg}}(A, k^{\text{sep}}) = \bigsqcup \operatorname{Hom}_{k\text{-alg}}(K_i, k^{\text{sep}}). \tag{2}$$

Hence $\operatorname{Hom}_{k\text{-alg}}(A, k^{\text{sep}})$ is finite of order $\dim_k A$ since each K_i is separable.

Finally, we must show that the k-algebra homomorphisms get mapped to G-equivariant maps under \mathcal{F} . If $f:A\to B$ is a k-algebra homomorphism, then $\mathcal{F}(f):\operatorname{Hom}_{k\text{-alg}}(B,k^{\text{sep}})\to\operatorname{Hom}_{k\text{-alg}}(A,k^{\text{sep}})$ is simply precomposition by f. Thus, if $\phi:B\to k^{\text{sep}}$ is a k-algebra homomorphism, $\sigma\in G$ and $b\in B$, then

$$\mathfrak{F}(f)(\sigma\phi)(b) = (\sigma\phi \circ f)(b) = (\sigma\phi)(f(b)) = \sigma(\phi(f(b))) = \sigma(\mathfrak{F}(f)(\phi)(b)) = \sigma\mathfrak{F}(f)(\phi)(b).$$

That is, $\mathcal{F}(f)$ is G-equivariant as required.

2. (\mathcal{G} is well-defined) Notice that \mathcal{G} is just the composition of the functors $\operatorname{Hom}_{G\text{-set}}(-,k^{\operatorname{sep}})$ and the fixed point functor so functoriality is automatic; we need only prove that \mathcal{G} has the correct domain, i.e. $\operatorname{Hom}_{G\text{-set}}(X,k^{\operatorname{sep}})^G$ is indeed an étale algebra.

Suppose that X is a finite G-set. Then we can decompose X into a disjoint union of orbits, say $X = X_1 \sqcup \cdots \sqcup X_r$ with some choice of representative $x_i \in X_i$. There is a natural bijection

$$\operatorname{Hom}_{G\operatorname{-set}}(X, k^{\operatorname{sep}}) = \prod \operatorname{Hom}_{G\operatorname{-set}}(X_i, k^{\operatorname{sep}}).$$

The fixed point functor is left exact so it preserves finite limits (i.e. products) so we have

$$\operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^{G} = \prod \operatorname{Hom}_{G\text{-set}}(X_{i}, k^{\operatorname{sep}})^{G}. \tag{3}$$

If $f \in \operatorname{Hom}_{G\text{-set}}(X_i, k^{\text{sep}})^G$ and $x \in X_i$ is arbitrary, then $x = \sigma x_i$ for some $\sigma \in G$ so that $f(x) = f(\sigma x_i) = f(x_i)$. This means that a map in $\operatorname{Hom}_{G\text{-set}}(X_i, k^{\text{sep}})^G$ is completely determined by its value on x_i . Furthermore, if $\sigma \in G_{x_i}$, then $\sigma x_i = x_i$ and thus $\sigma f(x_i) = f(x_i)$, which means that $f(x_i)$ lies in the fixed field $L_i := (k^{\text{sep}})^{G_{x_i}}$. Since the action $G \cap X$ is continous, then G_{x_i} is open and thus L_i is a finite extension of k. Conversely, any element α of L_i makes the map $f: X_i \to k^{\text{sep}}$, defined by $x_i \mapsto \alpha$, invariant under the action of G. Hence we get a k-algebra isomorphism

$$\operatorname{Hom}_{G\text{-set}}(X_i, k^{\operatorname{sep}})^G \xrightarrow{\sim} L_i$$
 defined by $f \mapsto f(x_i)$,

since the k-algebra operations are defined pointwise. Thus we get an isomorphism

$$\operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^G = \prod_{i=1}^r L_i$$

and therefore $\operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^G$ is an étale algebra by Theorem 6.

3. (\mathcal{F} is fully faithful) Let A and B be étale k-algebras. Then \mathcal{F} defines a map

$$\operatorname{Hom}_{k\text{-alg}}(A, B) \longrightarrow \operatorname{Hom}_{G\text{-set}}(\operatorname{Hom}_{k\text{-alg}}(B, k^{\text{sep}}), \operatorname{Hom}_{k\text{-alg}}(A, k^{\text{sep}}))$$

with $f:A\to B$ mapping to the function $f^*:\phi\mapsto\phi\circ f$. It is well-known that

$$\operatorname{Hom}_k(A,B) \cong \operatorname{Hom}_{k^{\operatorname{sep}}}(k^{\operatorname{sep}} \otimes_k A, k^{\operatorname{sep}} \otimes_k B)^G,$$

where the Hom sets are k-linear and k^{sep}-linear maps respectively. Since k-algebra homomorphisms on the LHS correspond to k^{sep}-algebra homomorphisms on the RHS, then we obtain

$$\operatorname{Hom}_{k\text{-alg}}(A,B) \cong \operatorname{Hom}_{k^{\operatorname{sep}}\text{-alg}}(k^{\operatorname{sep}} \otimes_k A, k^{\operatorname{sep}} \otimes_k B)^G.$$

Since A (resp. B) is étale, then $k^{\text{sep}} \otimes_k A$ (resp. $k^{\text{sep}} \otimes_k B$) is diagonalizable and hence a finite product of k^{sep} 's. Then by (2) we see that...

:

4. (\mathcal{F} is essentially surjective) Let X be a finite G-set. Consider

$$\epsilon: X \longrightarrow \mathcal{FG}(X) = \operatorname{Hom}_{k-\operatorname{alg}}(\operatorname{Hom}_{G-\operatorname{set}}(X, k^{\operatorname{sep}})^G, k^{\operatorname{sep}})$$
 with $x \mapsto \epsilon_x$

where ϵ_x is the evaluation at x map:

$$\epsilon_r : \operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^G \longrightarrow k^{\operatorname{sep}}$$
 is defined by $\epsilon_r(q) = q(x)$.

Below we show that ϵ is a G-equivariant set bijection.

First observe that if $X = X_1 \sqcup \cdots \sqcup X_r$ is the decomposition into orbits, then by (3) we have

$$\mathcal{FG}(X) = \operatorname{Hom}_{k\text{-alg}}(\operatorname{Hom}_{G\text{-set}}(X, k^{\operatorname{sep}})^G, k^{\operatorname{sep}})$$

$$\cong \operatorname{Hom}_{k\text{-alg}}\left(\prod \operatorname{Hom}_{G\text{-set}}(X_i, k^{\operatorname{sep}})^G, k^{\operatorname{sep}}\right)$$

$$\cong \left| \operatorname{Hom}_{k\text{-alg}}(\operatorname{Hom}_{G\text{-set}}(X_i, k^{\operatorname{sep}})^G, k^{\operatorname{sep}}).\right|$$

Thus it is enough to show that $X_i \cong \operatorname{Hom}_{k\text{-alg}}(\operatorname{Hom}_{G\text{-set}}(X_i, k^{\text{sep}})^G, k^{\text{sep}})$. In other words, it is enough to show that ε is bijective when the action $G \curvearrowright X$ is transitive so we make this assumption going forward.

:

3 The module of Kähler differentials

We can also characterize étale algebras by the vanishing of its module of Kähler differentials.

Definition 2. Let A be a k-algebra (k not necessarily a field) and M and A-module. A k-derivation of A with values in M, is a k-linear map $d: A \to M$ that satisfies the Leibniz rule:

$$d(xy) = xd(y) + yd(x).$$

The set of such derivations is denoted by $\operatorname{Der}_k(A, M)$.

Theorem 8. Let A be a k-algebra (k not necessarily a field). There exists an A-module $\Omega^1_{A/k}$ and a k-derivation $d_{A/k}:A\to\Omega^1_{A/k}$ that satisfy the following universal property: for any A-module M and any k-derivation $d\in \operatorname{Der}_k(A,M)$, there exists a unique A-module morphism $\phi:\Omega^1_{A/k}\to M$ such that the following diagram commutes:

$$\begin{array}{c|c}
A & \xrightarrow{d} & M \\
\downarrow^{d_{A/k}} & & & \downarrow^{\phi}
\end{array}$$

$$\begin{array}{c}
\Omega^{1}_{A/k} & & & & \\
\end{array}$$
(4)

Remark 9. The universal property is equivalent to saying that there is a natural bijection

$$\operatorname{Hom}_A(\Omega^1_{A/k}, M) \xrightarrow{\sim} \operatorname{Der}_k(A, M)$$
 defined by $\psi \mapsto \psi \circ d_{A/k}$.

In fact, it is equivalent to saying that the functor

$$\operatorname{Der}_k(A,-):{}_{A}\mathbf{Mod}\longrightarrow{}_{A}\mathbf{Mod}$$
 defined by $M\mapsto\operatorname{Der}_k(A,M)$

is representable and it is represented by $\Omega^1_{A/k}$. Hence $\Omega^1_{A/k}$ is unique up to isomorphism; we call it the module of Kähler differentials of A over k.

Proposition 10. Let A be a k-algebra (k not necessarily a field). The module of Kähler differentials of A over k, satisfies the following properties:

- 1. $\Omega_{A/A}^1 = 0$
- 2. If k' is a k-algebra and we set $A' := k' \otimes_k A$, then $\Omega^1_{A'/k'} \cong k' \otimes_k \Omega^1_{A/k}$.
- 3. If $S \subset A$ is a multiplicatively closed set, then $S^{-1}(\Omega^1_{A/k}) \cong \Omega^1_{S^{-1}A/k}$.
- 4. If B is another k-algebra, then $\Omega^1_{A\times B/k}\cong\Omega^1_{A/k}\times\Omega^1_{B/k}$.
- 5. If $A \rightarrow B$ is a k-algebra homomorphism, then we have the exact sequence

$$\Omega^1_{A/k} \otimes_A B \longrightarrow \Omega^1_{B/k} \longrightarrow \Omega^1_{B/A} \longrightarrow 0.$$

6. If $A \to B$ is a surjective k-algebra homomorphism with kernel $I \subset A$, then we can the above exact sequence to the left as

$$I/I^2 \longrightarrow \Omega^1_{A/k} \otimes_A B \longrightarrow \Omega^1_{B/k} \longrightarrow 0.$$

7. If $A \to k$ is a surjective k-algebra homomorphism with kernel $I \subset A$, then we have a canonical isomorphism

$$\Omega^1_{A/k} \cong I/I^2.$$

We can now state and prove the characterization of étale algebras in terms of their Kähler differentials.

Theorem 11. Let A be a finite k-algebra. Then A is étale if and only if $\Omega^1_{A/k} = 0$.

Proof. Set $\overline{A} := \overline{k} \otimes_k A$.

 (\Longrightarrow) By Theorem 6, we know that $\overline{A} \cong \overline{k} \times \cdots \times \overline{k}$. Hence

$$\overline{k} \otimes_k \Omega^1_{A/k} \cong \Omega^1_{\bar{A}/\bar{k}} \cong \Omega^1_{\bar{k}/\bar{k}} \times \cdots \times \Omega^1_{\bar{k}/\bar{k}} = 0.$$

Hence $\Omega^1_{A/k} = 0$.

(\Leftarrow) Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the maximal ideals of A. By Corollary 2, we can write $A = \prod A_i$ where $A_i = A/\mathfrak{m}_i^n$ are finite k-algebras that are local. By assumption

$$0 = \Omega^1_{A/k} \cong \prod \Omega^1_{A_i/k},$$

so $\Omega^1_{A_i/k} = 0$ for all i. Since $\overline{k} = k$, then $A_i/\mathfrak{m}_i = k$. Thus the projection map $A_i \to A_i/\mathfrak{m}_i = k$ tells us that $\Omega^1_{A_i/k} \cong \mathfrak{m}_i/\mathfrak{m}_i^2$ canonically. Hence $\mathfrak{m}_i = \mathfrak{m}_i^2$ so that Nakayama's Lemma implies that $\mathfrak{m}_i = 0$. That is, $A_i \cong k$ so that A is diagonalizable, hence étale.

For the case when $k \neq \bar{k}$, the above argument says that \bar{A} is étale, i.e. reduced. For any algebraic extension K of k, we have $K \otimes_k A \hookrightarrow \bar{A}$ so that $K \otimes_k A$ is reduced. Thus A is étale.

4 Étale Group Schemes

Let $X = \operatorname{Spec} A$ be an affine scheme over k. We say the X is étale if A is an étale k-algebra. Then we have the following scheme-theoretic version of Theorem 6.

Theorem 12. Let $X = \operatorname{Spec} A$ be an affine scheme finite over k, i.e. A is a finite k-algebra. Then the following are equivalent:

- 1. X is étale.
- 2. X is geometrically reduced.
- 3. X is smooth.

Proof. If A is an étale, then $\bar{k} \otimes_k A$ is reduced, i.e. X is geometrically reduced. If X is geometrically reduced, then $\bar{k} \otimes A$ is reduced and thus $K \otimes_k A \hookrightarrow \bar{k} \otimes_K A$ is as well for any algebraic extension K of k. Hence A is étale.

For $\mathfrak{p} \in \operatorname{Spec}(A)$, we have $T_{\mathfrak{p}}X = (\mathfrak{m}_p/\mathfrak{m}_p^2)^{\vee}$. Since $A_{\mathfrak{p}} \to A_{\mathfrak{p}}/\mathfrak{m}_p = k$ is surjective, then

$$(T_{\mathfrak{p}}X)^{\vee} \cong \mathfrak{m}_p/\mathfrak{m}_p^2 \cong \Omega^1_{A_p/k} \cong (\Omega^1_{A/k})_{\mathfrak{p}}.$$

Thus

$$\dim_k T_{\mathfrak{p}}X = 0 \quad \forall \mathfrak{p} \quad \Longleftrightarrow \quad (\Omega^1_{A/k})_{\mathfrak{p}} = 0 \quad \forall \mathfrak{p} \quad \Longleftrightarrow \quad \Omega^1_{A/k} = 0.$$

Thus if X is smooth, then $\dim_k T_{\mathfrak{p}}X = \dim X$

Now let us work with group schemes. Let \mathcal{G} be a finite group scheme over k, so $G = \operatorname{Spec} A$ for a Hopf algebra A which is a finite k-algebra. In this case, A is finite dimensional over k, so we define the *order* of \mathcal{G} to be

$$o(\mathcal{G}) := \dim_k(A).$$

The order of a finite group scheme determines its smoothness.

Theorem 13. Let \mathcal{G} be a finite group scheme over k. If o(G) is invertible in k, then G is étale.

Proof. We separate into two cases:

- 1. $(\operatorname{char}(k) = 0)$ In this case, Cartier's theorem states that \mathcal{G} is smooth hence étale by Theorem 12.
- 2. $(\operatorname{char}(k) = p)$ Consider the following map:

$$\phi_r: A \longrightarrow A$$
 defined by $a \mapsto a^{p^r}$.

This map is the p^r th Frobenious map and it is a k-algebra homomorphism since $\operatorname{char}(k) = p$. Since A is noetherian, then its nilradical N is annihilated by some exponent n > 0 (see the proof of corollary (2)). So if r is such that $p^r > n$, then $\phi_r(A) = A^{p^r}$ is reduced. Thus for sufficiently large r, the image of the Frobenious map is smooth.

The galois theory of étale algebras translates to the theory of group schemes as follows.

Theorem 14. The functor $X \mapsto X(k^{\text{sep}})$ is an equivalence between the categories of étale schemes over k and the category of finite discrete G-sets. Moreover, the functor $\mathcal{G} \mapsto \mathcal{G}(k^{\text{sep}})$ is an equivalence between the category of finite étale group schemes and finite (discrete) groups with a continuous action of $\operatorname{Gal}(k^{\text{sep}}/k)$.