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1 Étale algebras

Let k be a field and choose some algebraic closure k of k. The n-fold cartesian product k× · · · × k can be made
into a k-algebra via the diagonal embedding.

Definition 1. (Bourbaki) Let A be a k-algebra. Then

1. A is diagonalizable if A ∼= k × · · · × k as k-algebras.

2. A is étale if A⊗k K is a diagonalizable K-algebra for some field K containing k.

Next we focus on the case that A is a finite k-algebra, that is, A is a finite dimensional k-vector space. Finite
algebras are particularly nice. An immediate observation is that A has only finitely many maximal ideals.
Indeed, if S is any finite set of maximal ideals of A, then the Chinese Remainder Theorem tells us that

Φ : A −→
∏
m∈S

A/m defined by a 7→ (a+m)m∈S

is surjective and hence

dimk A ≥ dimk

∏
m∈S

A/m =
∑
m∈S

dimk A/m ≥
∑
m∈S

1 = |S|.

in other words, |Specm(A)| ≤ dimk A <∞.
With this observation, we can compute the nilradical of A and compute the reduced ring A/N .

Lemma 1. Let A be a finite k-algebra with maximal ideals m1, . . . ,mr, and let N be the nilradical of A. Then

N = m1 ∩ · · · ∩mr.

In particular, A/N is isomorphic to a product of r fields.

Proof. By Zorn’s lemma, we know that N is the intersection of all prime ideals of A, hence N ⊆ ∩mi, so we
only need to prove the reverse inclusion which amounts to Hilbert’s Nullestellensatz.

Since A is a finitely generated k-algebra, then A ∼= k[x1, . . . , xn]/I for some proper ideal I ⊂ k[x1, . . . , xn]
so we identify A with this quotient. Let f ∈ k[x1, . . . , xn] be such that f + I ∈ A is in the intersection of all
the maximal ideals of A, that is

f ∈
⋂
m⊇I

m.

We want to show that f + I is in N , i.e. there exists a positive integer n such that (f + I)n = 0 or equivalently,
fn ∈ I.

By the weak Nullstellensatz, we have that the algebraic set

V (I) = {p = (p1, . . . , pn) ∈ k
n | g(p) = 0, ∀g ∈ I}

is non-empty, so let b ∈ V (I). The image R of the evaluation map

ϵb : k[x1, . . . , xn] −→ k defined by g 7→ g(b)

is a subgring of k. In fact, R is finite dimensional over k since ϵb factors through a surjective k-linear map
A → R where A is finite dimensional by assumption. This implies that the image of ϵb is a field. Indeed, if
α ∈ R \ {0}, then the multiplication map x 7→ αx is an injective k-linear endomorphism of R (notice that R
is an integral domain by being a subring of a field), and hence an isomorphism which yields a multiplicative
inverse for α.

Therefore, ker ϵb is a maximal ideal of k[x1, . . . , xn] that contains I. By our choice of f , we have that
f ∈ ker ϵb. We have shown that for every b ∈ V (I), we have f(b) = 0. By the Nullstellensatz, there is a positive
integer m for which fn ∈ I, as required.
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Corollary 2. Let A be a finite k-algebra with maximal ideals m1, . . . ,mr. Then there is a positive integer n
such that

A ∼=
r∏

i=1

A/mn
i .

In particular, A is a finite direct product of local rings.

Proof. Let N be the nilradical of A. Since A is noetherian (it is a finitely generated module over a noetherian
ring), then N is finitely generated, say N = ⟨y1, . . . , ys⟩. For each j = 1, . . . , s, there is a smallest integer ni > 1
such that yni

i = 0. If we set

n := 1 +

s∑
i=1

(ni − 1),

then Nn = 0. Indeed, an element of Nn is a linear combination of monomials of the form ym1
1 · · · yms

s with∑
mi = n, and by definition of n, at least one mi satisfies mi ≥ ni so that the monomial is zero. Notice that n

is the minimal exponent that does annihilates N .
By Lemma 1, we then have: ∏

mn
i ⊆

⋂
mn

i =
(⋂

mi

)n

= Nn = 0.

Now, observe that for i ̸= j, mi and mj are coprime. So√
mn

i +mn
j =

√√
mn

i +
√
mn

j =
√

mi +mj =
√
(1)

which implies that mn
i + mn

j , i.e. the factors of
∏

mn
i are pairwise comprime and hence ∩mn

i =
∏

mi = 0.
Therefore the map A→

∏
A/mn

i is an isomorphism.

Remark 3. Corollary 2 is half of the structure theorem for Artin rings that states that an Artin ring is uniquely
(up to isomorphism) a finite direct product of Artin local rings.

Corollary 4. Let A be a finite k-algebra. If A is diagonalizable, then A is reduced.

Proof. Since A is diagonalizable, then A ∼= kn as k-algebras; let us write ψ : A→ kn for this isomorphism. For
i = 1, . . . , n, we have the projection maps kn → k which when precomposed with ψ give us surjective k-algebra
homomorphisms πi : A → k. In fact, ψ(x) = (π1(x), . . . , πn(x)). Furthermore, kerπi is a maximal ideal for all
i. Thus, Lemma 1 implies that

N ⊆
n⋂

i=1

kerπi,

where N is the nilradical of A. Finally, if x ∈ kerπ1 ∩ · · · ∩ kerπn, then ψ(x) = 0 and thus x = 0 since ψ is an
isomorphism. We conclude that N = 0 as required.

We now have the tools to characterize finite k-algebras.

Proposition 5. Let A be a finitely generated k-algebra. Then the following are equivalent:

1. A is a finite k-algebra.

2. A is artinian.

3. dimA = 0.

4. Specm(A) is a finite discrete space.

Proof. We prove the following implications.

(1 =⇒ 2) Since k is artinian and A is a finitely generated k-module, then A is artinian.

(2 =⇒ 3) Let p ∈ Spec(A) and let x ∈ A/p nonzero. Since A is artinian, then so is A/p by the correspondence
theorem. Thus the descending chain (x) ⊇ (x2) ⊇ · · · stabilizes, that is, (xn) = (xn+1) for some n > 1.
In other words, xn = xn+1y for some y ∈ A/p. Since A/p is an integral domain, we may cancel xn to get
1 = xy, i.e. x is a unit and hence A/p is a field. This shows that every prime ideal of A is maximal, i.e.
dimA = 0.

(3 =⇒ 1) By the Noether normalization lemma, there exists algebraically independent elements x1, . . . , xr ∈ A such
that A is finite over k[x1, . . . , xr]. Since dimA = 0, then we must have r = 0. Hence A is finite over k.
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(1 =⇒ 4) Let {m1, . . . ,mr} be the set of maximal ideals of A. By Corollary 2, we have A ∼=
∏
Ai where each Ai is

a local ring with maximal ideal mi, i.e. Specm(Ai) = {mi}. Hence

Specm(A) =
⊔

Specm(A/mi) =
⊔

{mi}.

Thus Specm(A) is discrete.

(4 =⇒ 3) Let p ⊂ A be a prime ideal and supposem is a maximal ideal containing p. By assumption {m} ⊂ Specm(A)
is open. Then there exists f ∈ A such that Specm(Af ) = {m}. Since Af is a finitely generated k-algebra,
the Nullstellensatz implies (with a similar argument as in the proof of Lemma 1) that every prime ideal
q ⊂ Af is an intersection of maximal ideals. But Af has exactly one of them and hence q is maximal.
Thus dimAf = 0

We can know characterize the notion of étale k-algebras.

Theorem 6. Let A be a finite k-algebra. Then the following are equivalent:

1. A is étale.

2. K ⊗k A is reduced for every algebraic extension K of k.

3. A ∼= K1 × · · · ×Kr as k-algebras, where Ki is a finite separable extension of k.

4. k ⊗k A is a diagonalizable k-algebra.

Proof. We prove the following cycle of implications.

(1 =⇒ 2) Let K be a field containing k. By definition, there is a field L containing k such that L ⊗ A is a
diagonalizable L-algebra. Next, take a field F that contains both L and K (for example, one may take
the quotient of L⊗k K by some maximal ideal). Then

F ⊗k A ∼= (F ⊗L L)⊗k A ∼= F ⊗L (L⊗k A) ∼= F ⊗L L
n ∼= Fn.

That is, F ⊗k A is a diagonalizable F -algebra; by Corollary 4, F ⊗k A is reduced. Since A is a free
k-module, then it is flat. Thus the inclusion map K ↪→ F remains injective after tensoring with A. Thus
we may view K ⊗k A as a subring of F ⊗k A. Thus K ⊗k A is also reduced.

(2 =⇒ 3) By assumption A ∼= k⊗kA is reduced, so its nilradical is zero so Lemma 1, tells us that A ∼= K1×· · ·×Kr

where Ki is a field extension of k. If one of the factors is an infinite field extension, then A would be
infinite dimensional, so every factor Ki is a finite extension of k.

Now, suppose that K1 is not separable. Then necessarily, char(k) = p > 0 and there is an element
α ∈ K1 whose minimal polynomial is of the form g(xp) for some g ∈ k[x]. If we write g(x) = g0 + · · · +
gn−1x

n−1 + xn, then over the field
L = K( p

√
g0, . . . , p

√
gn−1)

we have that g(xp) = h(x)p for some h(x) ∈ L[x]; in fact h(x) =
∑
hix

i with hi = p
√
gi. This implies that

L⊗k k[α] ∼= L⊗k
k[x]

(g(xp))
∼=

L[x]

(g(xp))
∼=

L[x]

(h(x))p
,

which is clearly not reduced. However, L⊗k k[α] ↪→ L⊗k K1 ⊂ L⊗k A, which would imply that L⊗k A
is not reduced. However, this contradicts our assumption.

(3 =⇒ 4) Suppose A ∼= K1 × · · · × Kr with Ki a finite separable extension of k. By the primitive root theorem,
Ki = k[αi] for some αi ∈ k. The minimal polynomial fi ∈ k[x] of αi is separable, so it splits completely
over k into distinct linear factors. Thus

k ⊗k Ki
∼= k ⊗k k[αi] ∼= k ⊗k

k[x]

(fi)
=
k[x]

(fi)
∼= k × · · · × k.

Thus

k ⊗k A ∼= k ⊗k (K1 × · · · ×Kr) ∼= (k ⊗k K1)× · · · × (k ⊗k Kr) ∼= (k × · · · × k)× · · · × (k × · · · × k).

Therefore k ⊗k A is diagonalizable.

(4 =⇒ 1) By definition.
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2 Galois theory of étale algebras

Let k be a field and fix a separable closure ksep and let G = Gal (ksep/k). A set X is a G-set if there is a group
action G × X → X that is continuous with respect to the Krull topology on G and the discrete topology on
X. By definition of the Krull topology, the action is continuous if and only if for every x ∈ X, the stabilizer
subgroup Gx is open in G.

Let A be an étale algebra over k. Then G acts on Homk-alg(A, k
sep) as follows:

G↷ Homk-alg(A, k
sep) with (σ, f) 7→ σf defined by (σf)(a) := σ(f(a)). (1)

So we a G action on Homk-alg(A, k
sep). Conversely, let X be a finite G-set. Then HomG-set(X, k

sep) is a
k-algebra where the operations are defined pointwise. Furthermore, G acts on this k-algebra as follows:

G↷ HomG-set(X, k
sep) with (σ, f) 7→ σf defined by (σf)(x) = σ(f(σ−1x)).

Thus we can form the fixed points HomG-set(X, k
sep)G of this action. Notice that

f ∈ HomG-set(X, k
sep)G ⇐⇒ f(σx) = σ(f(x)) ∀x ∈ X, σ ∈ G.

It is clear that HomG-set(X, k
sep)G is a k-subalgebra of HomG-set(X, k

sep).
Above, we have defined functors between the category of finite G-sets and the category of étale algebras.

We make this statement precise and prove it below.

Theorem 7. Let k be a field, ksep a choice of separable closure and G = Gal (ksep/k) the absolute Galois group.
Let Ét-Algk be the category of étale k-algebras and FinSetG be the category of finite G-sets. Then there are
functors

F : Ét-Algk −→ FinSetG A 7→ Homk-alg(A, k
sep)

G : FinSetG −→ Ét-Algk X 7→ HomG-set(X, k
sep)G

These functors define an equivalence of categories.

Proof. We break up the proof into several steps.

1. (F is well-defined) First we show that the action of G on Homk-alg(A, k
sep), defined in (1) is continuous.

To see this, we write A ∼= K1 × · · · ×Kr where Ki is a finite separable extension of k. Then we embed
Ki ↪→ ksep and take the Galois closure L of the compositum K1 · · ·Kr. This is a finite Galois extension
since each Ki is finite. This means that for any f ∈ Homk-alg(A, k

sep), the image f(A) lies in L, so
Gal (ksep/L) ⊆ Gf . Since Gal (ksep/L) is open of finite index, then so is Gf (it is the finite union of
translates of Gal (ksep/L)) and hence the above action is continuous.

Next, we show that Homk-alg(A, k
sep) is finite. If A = A1 × · · · × As is a product of étale algebras

(which is again étale by Theorem 6), then any map f ∈ Homk-alg(A, k
sep) must be zero on all factors

except (possibly) one factor. Indeed, ksep is an integral domain. Thus we have

Homk-alg

(∏
Ai, k

sep
)
=

⊔
Homk-alg(Ai, k

sep).

In particular, if A is an étale algebra with A ∼=
∏
Ki, then

Homk-alg(A, k
sep) =

⊔
Homk-alg(Ki, k

sep). (2)

Hence Homk-alg(A, k
sep) is finite of order dimk A since each Ki is separable.

Finally, we must show that the k-algebra homomorphisms get mapped to G-equivariant maps under
F. If f : A → B is a k-algebra homomorphism, then F(f) : Homk-alg(B, k

sep) → Homk-alg(A, k
sep) is

simply precomposition by f . Thus, if ϕ : B → ksep is a k-algebra homomorphism, σ ∈ G and b ∈ B, then

F(f)(σϕ)(b) = (σϕ ◦ f)(b) = (σϕ)(f(b)) = σ(ϕ(f(b))) = σ(F(f)(ϕ)(b)) = σF(f)(ϕ)(b).

That is, F(f) is G-equivariant as required.

2. (G is well-defined) Notice that G is just the composition of the functors HomG-set(−, ksep) and the fixed
point functor so functoriality is automatic; we need only prove that G has the correct domain, i.e.
HomG-set(X, k

sep)G is indeed an étale algebra.
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Suppose that X is a finite G-set. Then we can decompose X into a disjoint union of orbits, say
X = X1 ⊔ · · · ⊔Xr with some choice of representative xi ∈ Xi. There is a natural bijection

HomG-set(X, k
sep) =

∏
HomG-set(Xi, k

sep).

The fixed point functor is left exact so it preserves finite limits (i.e. products) so we have

HomG-set(X, k
sep)G =

∏
HomG-set(Xi, k

sep)G. (3)

If f ∈ HomG-set(Xi, k
sep)G and x ∈ Xi is arbitrary, then x = σxi for some σ ∈ G so that f(x) =

f(σxi) = f(xi). This means that a map in HomG-set(Xi, k
sep)G is completely determined by its value

on xi. Furthermore, if σ ∈ Gxi
, then σxi = xi and thus σf(xi) = f(xi), which means that f(xi) lies in

the fixed field Li := (ksep)Gxi . Since the action G ↷ X is continous, then Gxi is open and thus Li is a
finite extension of k. Conversely, any element α of Li makes the map f : Xi → ksep, defined by xi 7→ α,
invariant under the action of G. Hence we get a k-algebra isomorphism

HomG-set(Xi, k
sep)G

∼−→ Li defined by f 7→ f(xi),

since the k-algebra operations are defined pointwise. Thus we get an isomorphism

HomG-set(X, k
sep)G =

r∏
i=1

Li

and therefore HomG-set(X, k
sep)G is an étale algebra by Theorem 6.

3. (F is fully faithful) Let A and B be étale k-algebras. Then F defines a map

Homk-alg(A,B) −→ HomG-set(Homk-alg(B, k
sep),Homk-alg(A, k

sep))

with f : A→ B mapping to the function f∗ : ϕ 7→ ϕ ◦ f . It is well-known that

Homk(A,B) ∼= Homksep(ksep ⊗k A, k
sep ⊗k B)G,

where the Hom sets are k-linear and ksep-linear maps respectively. Since k-algebra homomorphisms on
the LHS correspond to ksep-algebra homomorphisms on the RHS, then we obtain

Homk-alg(A,B) ∼= Homksep-alg(k
sep ⊗k A, k

sep ⊗k B)G.

Since A (resp. B) is étale, then ksep ⊗k A (resp. ksep ⊗k B) is diagonalizable and hence a finite product
of ksep’s. Then by (2) we see that...

...

4. (F is essentially surjective) Let X be a finite G-set. Consider

ϵ : X −→ FG(X) = Homk-alg(HomG-set(X, k
sep)G, ksep) with x 7→ ϵx

where ϵx is the evaluation at x map:

ϵx : HomG-set(X, k
sep)G −→ ksep is defined by ϵx(g) = g(x).

Below we show that ϵ is a G-equivariant set bijection.

Firts observe that if X = X1 ⊔ · · · ⊔Xr is the decomposition into orbits, then by (3) we have

FG(X) = Homk-alg(HomG-set(X, k
sep)G, ksep)

∼= Homk-alg

(∏
HomG-set(Xi, k

sep)G, ksep
)

∼=
⊔

Homk-alg(HomG-set(Xi, k
sep)G, ksep).

Thus it is enough to show that Xi
∼= Homk-alg(HomG-set(Xi, k

sep)G, ksep). In other words, it is enough to
show that ε is bijective when the action G↷ X is transitive so we make this assumption going forward.

...
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3 The module of Kähler differentials

We can also characterize étale algebras by the vanishing of its module of Kähler differentials.

Definition 2. Let A be a k-algebra (k not necessarily a field) and M and A-module. A k-derivation of A with
values in M , is a k-linear map d : A→M that satisfies the Leibniz rule:

d(xy) = xd(y) + yd(x).

The set of such derivations is denoted by Derk(A,M).

Theorem 8. Let A be a k-algebra (k not necessarily a field). There exists an A-module Ω1
A/k and a k-derivation

dA/k : A → Ω1
A/k that satisfy the following universal property: for any A-module M and any k-derivation

d ∈ Derk(A,M), there exists a unique A-module morphism ϕ : Ω1
A/k → M such that the following diagram

commutes:

A M

Ω1
A/k

dA/k

d

ϕ
(4)

Remark 9. The universal property is equivalent to saying that there is a natural bijection

HomA(Ω
1
A/k,M)

∼−→ Derk(A,M) defined by ψ 7→ ψ ◦ dA/k.

In fact, it is equivalent to saying that the functor

Derk(A,−) : AMod −→ AMod defined by M 7→ Derk(A,M)

is representable and it is represented by Ω1
A/k. Hence Ω1

A/k is unique up to isomorphism; we call it the module
of Kähler differentials of A over k.

Proposition 10. Let A be a k-algebra (k not necessarily a field). The module of Kähler differentials of A over
k, satisfies the following properties:

1. Ω1
A/A = 0

2. If k′ is a k-algebra and we set A′ := k′ ⊗k A, then Ω1
A′/k′

∼= k′ ⊗k Ω1
A/k.

3. If S ⊂ A is a multiplicatively closed set, then S−1(Ω1
A/k)

∼= Ω1
S−1A/k.

4. If B is another k-algebra, then Ω1
A×B/k

∼= Ω1
A/k × Ω1

B/k.

5. If A→ B is a k-algebra homomorphism, then we have the exact sequence

Ω1
A/k ⊗A B Ω1

B/k Ω1
B/A 0.

6. If A→ B is a surjective k-algebra homomorphism with kernel I ⊂ A, then we can the above exact sequence
to the left as

I/I2 Ω1
A/k ⊗A B Ω1

B/k 0.

7. If A→ k is a surjective k-algebra homomorphism with kernel I ⊂ A, then we have a canonical isomorphism

Ω1
A/k

∼= I/I2.

We can now state and prove the characterization of étale algebras in terms of their Kähler differentials.

Theorem 11. Let A be a finite k-algebra. Then A is étale if and only if Ω1
A/k = 0.

Proof. Set A := k ⊗k A.

(=⇒) By Theorem 6, we know that A ∼= k × · · · × k. Hence

k ⊗k Ω1
A/k

∼= Ω1
Ā/k̄

∼= Ω1
k̄/k̄ × · · · × Ω1

k̄/k̄ = 0.

Hence Ω1
A/k = 0.
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(⇐=) Let m1, . . . ,mr be the maximal ideals of A. By Corollary 2, we can write A =
∏
Ai where Ai = A/mn

i

are finite k-algebras that are local. By assumption

0 = Ω1
A/k

∼=
∏

Ω1
Ai/k

,

so Ω1
Ai/k

= 0 for all i. Since k = k, then Ai/mi = k. Thus the projection map Ai → Ai/mi = k tells us

that Ω1
Ai/k

∼= mi/m
2
i canonically. Hence mi = m2

i so that Nakayama’s Lemma implies that mi = 0. That
is, Ai

∼= k so that A is diagonalizable, hence étale.

For the case when k ̸= k̄, the above argument says that Ā is étale, i.e. reduced. For any algebraic
extension K of k, we have K ⊗k A ↪→ Ā so that K ⊗k A is reduced. Thus A is étale.

4 Étale Group Schemes

Let X = SpecA be an affine scheme over k. We say the X is étale if A is an étale k-algebra. Then we have the
following scheme-theoretic version of Theorem 6.

Theorem 12. Let X = SpecA be an affine scheme finite over k, i.e. A is a finite k-algebra. Then the following
are equivalent:

1. X is étale.

2. X is geometrically reduced.

3. X is smooth.

Proof. If A is an étale, then k̄ ⊗k A is reduced, i.e. X is geometrically reduced. If X is geometrically reduced,
then k̄ ⊗ A is reduced and thus K ⊗k A ↪→ k̄ ⊗K A is as well for any algebraic extension K of k. Hence A is
étale.

For p ∈ Spec(A), we have TpX = (mp/m
2
p)

∨. Since Ap → Ap/mp = k is surjective, then

(TpX)∨ ∼= mp/m
2
p
∼= Ω1

Ap/k
∼= (Ω1

A/k)p.

Thus
dimk TpX = 0 ∀p ⇐⇒ (Ω1

A/k)p = 0 ∀p ⇐⇒ Ω1
A/k = 0.

Thus if X is smooth, then dimk TpX = dimX

Now let us work with group schemes. Let G be a finite group scheme over k, so G = SpecA for a Hopf
algebra A which is a finite k-algebra. In this case, A is finite dimensional over k, so we define the order of G to
be

o(G) := dimk(A).

The order of a finite group scheme determines its smoothness.

Theorem 13. Let G be a finite group scheme over k. If o(G) is invertible in k, then G is étale.

Proof. We separate into two cases:

1. (char(k) = 0) In this case, Cartier’s theorem states that G is smooth hence étale by Theorem 12.

2. (char(k) = p) Consider the following map:

ϕr : A −→ A defined by a 7→ ap
r

.

This map is the prth Frobenious map and it is a k-algebra homomorphism since char(k) = p. Since A is
noetherian, then its nilradical N is annihilated by some exponent n > 0 (see the proof of corollary (2)).
So if r is such that pr > n, then ϕr(A) = Apr

is reduced. Thus for sufficiently large r, the image of the
Frobenious map is smooth.

The galois theory of étale algebras translates to the theory of group schemes as follows.

Theorem 14. The functor X 7→ X(ksep) is an equivalence between the categories of étale schemes over k and
the category of finite discrete G-sets. Moreover, the functor G 7→ G(ksep) is an equivalence between the category
of finite étale group schemes and finite (discrete) groups with a continuous action of Gal (ksep/k).
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