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1 Etale algebras
Let k be a field and choose some algebraic closure k of k. The n-fold cartesian product k x - - - x k can be made
into a k-algebra via the diagonal embedding.
Definition 1. (Bourbaki) Let A be a k-algebra. Then
1. Ais diagonalizable if A =2k x --- x k as k-algebras.
2. Ais étale if A®y K is a diagonalizable K-algebra for some field K containing k.

Next we focus on the case that A is a finite k-algebra, that is, A is a finite dimensional k-vector space. Finite
algebras are particularly nice. An immediate observation is that A has only finitely many maximal ideals.
Indeed, if S is any finite set of maximal ideals of A, then the Chinese Remainder Theorem tells us that

©:A— [] A/m defined by a+ (a+m)mes
mes
is surjective and hence
dimg A > dimy, [[ A/m =" dim A/m> > 1=15].
mes mes mes

in other words, |Specm(A)| < dimy A < co.
With this observation, we can compute the nilradical of A and compute the reduced ring A/N.

Lemma 1. Let A be a finite k-algebra with mazimal ideals my, ..., m,, and let N be the nilradical of A. Then
N=mnN---Nm,.
In particular, A/N is isomorphic to a product of r fields.

Proof. By Zorn’s lemma, we know that N is the intersection of all prime ideals of A, hence N C Nm;, so we
only need to prove the reverse inclusion which amounts to Hilbert’s Nullestellensatz.

Since A is a finitely generated k-algebra, then A 2 k[zq,...,x,]/I for some proper ideal I C k[z1,...,z,]
so we identify A with this quotient. Let f € k[z1,...,2,] be such that f + I € A is in the intersection of all
the maximal ideals of A, that is

fe ﬂ m.

m>OJ

We want to show that f+ I isin N, i.e. there exists a positive integer n such that (f + )™ = 0 or equivalently,
frel
By the weak Nullstellensatz, we have that the algebraic set

V() ={p=(p1,--,pn) €k" | g(p) =0, Vg € I}
is non-empty, so let b € V(I). The image R of the evaluation map
€ : klr1,...,2,) — k defined by g+ g(b)

is a subgring of k. In fact, R is finite dimensional over k since ¢, factors through a surjective k-linear map
A — R where A is finite dimensional by assumption. This implies that the image of ¢, is a field. Indeed, if
a € R\ {0}, then the multiplication map = + ax is an injective k-linear endomorphism of R (notice that R
is an integral domain by being a subring of a field), and hence an isomorphism which yields a multiplicative
inverse for a.

Therefore, kere, is a maximal ideal of k[zy,...,z,] that contains I. By our choice of f, we have that
f € ker ;. We have shown that for every b € V(I), we have f(b) = 0. By the Nullstellensatz, there is a positive
integer m for which f™ € I, as required. O



Corollary 2. Let A be a finite k-algebra with mazimal ideals my, ..., m,.. Then there is a positive integer n
such that

-
A=A/ mp.
i=1
In particular, A is a finite direct product of local rings.
Proof. Let N be the nilradical of A. Since A is noetherian (it is a finitely generated module over a noetherian

ring), then N is finitely generated, say N = (y1,...,ys). For each j =1,..., s, there is a smallest integer n; > 1
such that y;"* = 0. If we set

S

n = 1+Z(ni_1)’

i=1
then N™ = 0. Indeed, an element of N™ is a linear combination of monomials of the form y"* ---y™ with
> m; = n, and by definition of n, at least one m; satisfies m; > n; so that the monomial is zero. Notice that n
is the minimal exponent that does annihilates N.
By Lemma 1, we then have:

l_lml-I C ﬂm? = (ﬂmz)n =N"=0.

Now, observe that for ¢ # j, m; and m; are coprime. So

ey =y g = msem = VD

which implies that mj + m?, i.e. the factors of [[m]' are pairwise comprime and hence Nmj = [[m; = 0.
Therefore the map A — [[ A/m? is an isomorphism. O

Remark 3. Corollary 2 is half of the structure theorem for Artin rings that states that an Artin ring is uniquely
(up to isomorphism) a finite direct product of Artin local rings.

Corollary 4. Let A be a finite k-algebra. If A is diagonalizable, then A is reduced.

Proof. Since A is diagonalizable, then A 2 k™ as k-algebras; let us write ¢ : A — k™ for this isomorphism. For
i =1,...,n, we have the projection maps k"™ — k which when precomposed with v give us surjective k-algebra
homomorphisms 7; : A — k. In fact, ¢(z) = (m1(z),...,m(x)). Furthermore, ker 7; is a maximal ideal for all
i. Thus, Lemma 1 implies that

N C ﬂ ker m;,
i=1
where N is the nilradical of A. Finally, if z € kerm; N -+ Nkerm,, then ¢ (z) = 0 and thus = = 0 since ¢ is an
isomorphism. We conclude that N = 0 as required. O

We now have the tools to characterize finite k-algebras.

Proposition 5. Let A be a finitely generated k-algebra. Then the following are equivalent:
1. A is a finite k-algebra.
2. A is artinian.
3. dim A = 0.
4. Specm(A) is a finite discrete space.

Proof. We prove the following implications.

(1 = 2) Since k is artinian and A is a finitely generated k-module, then A is artinian.

(2= 3) Let p € Spec(A) and let = € A/p nonzero. Since A is artinian, then so is A/p by the correspondence
theorem. Thus the descending chain (z) 2 (22) D --- stabilizes, that is, (z") = (2"!) for some n > 1.
In other words, 2™ = z" 1y for some y € A/p. Since A/p is an integral domain, we may cancel 2" to get
1 =y, i.e. x is a unit and hence A/p is a field. This shows that every prime ideal of A is maximal, i.e.

dim A = 0.
(3 = 1) By the Noether normalization lemma, there exists algebraically independent elements x1, ..., z, € A such
that A is finite over k[z1,...,x,]. Since dim A = 0, then we must have » = 0. Hence A is finite over k.



(1=4)

(4=13)

Let {my,...,m,} be the set of maximal ideals of A. By Corollary 2, we have A =[] A; where each A; is
a local ring with maximal ideal m;, i.e. Specm(4;) = {m;}. Hence

Specm(A) = |_| Speem(A/m;) = |_|{ml}
Thus Specm(A) is discrete.

Let p C A be a prime ideal and suppose m is a maximal ideal containing p. By assumption {m} C Specm(A)
is open. Then there exists f € A such that Specm(Ay) = {m}. Since Ay is a finitely generated k-algebra,
the Nullstellensatz implies (with a similar argument as in the proof of Lemma 1) that every prime ideal
q C Ay is an intersection of maximal ideals. But A; has exactly one of them and hence q is maximal.
Thus dim Ay =0

O

We can know characterize the notion of étale k-algebras.

Theorem 6. Let A be a finite k-algebra. Then the following are equivalent:

1.
2.
3.
4.

A is étale.
K ®j A is reduced for every algebraic extension K of k.
A2 Ky x--- X K, as k-algebras, where K; is a finite separable extension of k.

k ® A is a diagonalizable k-algebra.

Proof. We prove the following cycle of implications.

(1=2)

(2=13)

(3=14)

4=1)

Let K be a field containing k. By definition, there is a field L containing k such that L ® A is a
diagonalizable L-algebra. Next, take a field F' that contains both L and K (for example, one may take
the quotient of L ®; K by some maximal ideal). Then

FrA2(FRLL) @t A2 F®L (Le,A) 2 Fep L" =2 F".

That is, I' ®; A is a diagonalizable F-algebra; by Corollary 4, F ® A is reduced. Since A is a free
k-module, then it is flat. Thus the inclusion map K < F' remains injective after tensoring with A. Thus
we may view K ®j A as a subring of F'®; A. Thus K ®; A is also reduced.

By assumption A & k ®y A is reduced, so its nilradical is zero so Lemma 1, tells us that A & K; x--- x K,
where K; is a field extension of k. If one of the factors is an infinite field extension, then A would be
infinite dimensional, so every factor K; is a finite extension of k.

Now, suppose that K; is not separable. Then necessarily, char(k) = p > 0 and there is an element
« € K; whose minimal polynomial is of the form g(zP) for some g € k[x]. If we write g(xz) =go+ -+ +

Gn_12" 1 4+ 2", then over the field
L=K(Y90,--+/In—1)
we have that g(z?) = h(z)P for some h(z) € L[z]; in fact h(z) = Y h;x* with h; = ¢/g;. This implies that
k[z] L[z] L[z]
L ® klal =2 L ®; = = )
AEEE ) = o) i)y

which is clearly not reduced. However, L ®j, k[a] = L ®; K1 C L ®; A, which would imply that L ®; A
is not reduced. However, this contradicts our assumption.

Suppose A & Kj x --- x K, with K; a finite separable extension of k. By the primitive root theorem,
K; = k[a;] for some a; € k. The minimal polynomial f; € k[z] of a; is separable, so it splits completely
over k into distinct linear factors. Thus

E®szgE®kk[Oél]gE®k _ = : gEx...Xk.

Thus

kor AZE@p (Kyx - xK) 2 (k@p K1) x - x (k@p K,) =2 (kx--xk)x-x(kx-xk).
Therefore k ®;, A is diagonalizable.
By definition.



2 Galois theory of étale algebras

Let k be a field and fix a separable closure k%P and let G = Gal (k°P/k). A set X is a G-set if there is a group
action G x X — X that is continuous with respect to the Krull topology on G and the discrete topology on
X. By definition of the Krull topology, the action is continuous if and only if for every x € X, the stabilizer
subgroup G is open in G.

Let A be an étale algebra over k. Then G acts on Homy_ai5(A4, k°°P) as follows:

G ~ Homya15(A, k*P)  with (o, f) — of defined by (of)(a) :=o(f(a)). (1)

So we a G action on Homy_aig(A, k*P). Conversely, let X be a finite G-set. Then Homg.get (X, k°P) is a
k-algebra where the operations are defined pointwise. Furthermore, G acts on this k-algebra as follows:

G ~ Homgeet (X, k°°P)  with (o, f) = of defined by (of)(z) = o(f(c ™ 2)).
Thus we can form the fixed points Homg_get (X, k5°P)C of this action. Notice that
f € Homgeet (X, k5P)¢ = floz) =0o(f(z)) Vze X, ocq.

It is clear that Homg.set (X, k%°P)¢ is a k-subalgebra of Homg.ge (X, k5°P).
Above, we have defined functors between the category of finite G-sets and the category of étale algebras.
We make this statement precise and prove it below.

Thegrem 7. Let k be a field, kP a choice of separable closure and G = Gal (kP /k) the absolute Galois group.
Let Et-Alg,, be the category of étale k-algebras and FinSetq be the category of finite G-sets. Then there are
functors

F: Et-Alg, — FinSetg A +— Homy iz (A, k*P)
G:FinSetg — Et-Alg, X — Homg set(X, k°P)°

These functors define an equivalence of categories.

Proof. We break up the proof into several steps.

1. (F is well-defined) First we show that the action of G on Homy_a1s(A, k°P), defined in (1) is continuous.
To see this, we write A = K; x --- x K, where K; is a finite separable extension of k. Then we embed
K; — k*°P and take the Galois closure L of the compositum K; --- K. This is a finite Galois extension
since each K; is finite. This means that for any f € Homy. aig(A, k°P), the image f(A) lies in L, so
Gal (kP /L) C Gy. Since Gal (k*P/L) is open of finite index, then so is Gy (it is the finite union of
translates of Gal (k%P /L)) and hence the above action is continuous.

Next, we show that Homy aig (A4, k5P) is finite. If A = Ay x --- x A is a product of étale algebras
(which is again étale by Theorem 6), then any map f € Homy. aig(A, k°P) must be zero on all factors
except (possibly) one factor. Indeed, kP is an integral domain. Thus we have

Homk—alg (H AZ', k’sep) = |_| Homk_alg (Au k’sep).
In particular, if A is an étale algebra with A =[] K, then
I{OHl},C_a]g(A7 k,sep) = |_| Homk_alg (Ki, ksep). (2)

Hence Homy, 15 (A, k°°P) is finite of order dimy, A since each K; is separable.

Finally, we must show that the k-algebra homomorphisms get mapped to G-equivariant maps under
F. If f: A— B is a k-algebra homomorphism, then F(f) : Homy. a1s(B, k°°P) — Homy_a1e (A, k5P) is
simply precomposition by f. Thus, if ¢ : B — k*°P is a k-algebra homomorphism, ¢ € G and b € B, then

F(f)(eg)(b) = (a¢ 0 f)(b) = (00)(f(b)) = a(8(f (b)) = o(F(f)(#) (b)) = o F(f)()(b).
That is, F(f) is G-equivariant as required.

2. (S is well-defined) Notice that G is just the composition of the functors Homg st (—, k°P) and the fixed
point functor so functoriality is automatic; we need only prove that § has the correct domain, i.e.
Homg._get (X, k5P)% is indeed an étale algebra.



Suppose that X is a finite G-set. Then we can decompose X into a disjoint union of orbits, say
X =X U-- U X, with some choice of representative x; € X;. There is a natural bijection

Homg_get (X, k°°P) = H Homg_get (X, £°P).
The fixed point functor is left exact so it preserves finite limits (i.e. products) so we have
Homgget (X, k5P)¢ = H Homget (X, k5P, (3)

If f € Homg.set(X;, k°°P)¢ and = € X; is arbitrary, then = ox; for some o € G so that f(z) =
f(oxz;) = f(x;). This means that a map in Homg.set(X;, k%P)¢ is completely determined by its value
on z;. Furthermore, if o € G,,, then ox; = x; and thus of(z;) = f(x;), which means that f(z;) lies in
the fixed field L; := (k%P)%=:. Since the action G ~ X is continous, then G,, is open and thus L; is a
finite extension of k. Conversely, any element « of L; makes the map f : X; — k°P, defined by z; — «,
invariant under the action of G. Hence we get a k-algebra isomorphism

HomG—sct (Xla ksep)G ; Lz defined by f = f(xz)v

since the k-algebra operations are defined pointwise. Thus we get an isomorphism
I
Homgget (X, °P)9 = ] Ls
i=1

and therefore Homg_get (X, k5P)% is an étale algebra by Theorem 6.
. (¥ is fully faithful) Let A and B be étale k-algebras. Then F defines a map
Homy, a1g (A, B) — Homg_set (Homy, a1¢ (B, £°°P), Homy,_aig (A4, £*F))
with f: A — B mapping to the function f*: ¢ +— ¢ o f. It is well-known that
Homy, (A, B) 22 Hompeen (K*P @3 A, k*°P @4 B)©,

where the Hom sets are k-linear and k®°P-linear maps respectively. Since k-algebra homomorphisms on
the LHS correspond to k°°P-algebra homomorphisms on the RHS, then we obtain

Homy,_1g(A, B) = Hompser_q1q (K5 @) A, k5P @y B)C.

Since A (resp. B) is étale, then k%P ®j A (resp. kP ®j B) is diagonalizable and hence a finite product
of kP’s. Then by (2) we see that...

. (¥ is essentially surjective) Let X be a finite G-set. Consider
€: X — FG(X) = Homy,_aig (Homg get (X, K°P)C E5P)  with 2+ €,
where €, is the evaluation at x map:
€r - Homg et (X, E*°P) — k*°P s defined by €,(g) = g().

Below we show that € is a G-equivariant set bijection.

Firts observe that if X = X; U--- U X, is the decomposition into orbits, then by (3) we have
FG(X) = Homy,_p1e (Home et (X, K5P)C k5P)
o Homk_alg (H Homg get (Xi7 ksep)G, ksep)

= |_| Homk_alg (Homg_set (Xi, kSCp)G, k‘sep).

Thus it is enough to show that X; = Homy_a1g(Homeg.set (X, kseP)G kseP). In other words, it is enough to
show that € is bijective when the action G ~ X is transitive so we make this assumption going forward.



3 The module of Kahler differentials

We can also characterize étale algebras by the vanishing of its module of Kéahler differentials.

Definition 2. Let A be a k-algebra (k not necessarily a field) and M and A-module. A k-derivation of A with
values in M, is a k-linear map d : A — M that satisfies the Leibniz rule:

d(zy) = xd(y) + yd(z).
The set of such derivations is denoted by Dery (A, M).

Theorem 8. Let A be a k-algebra (k not necessarily a field). There exists an A-module Qh/k and a k-derivation
dajk = A — Qz/k that satisfy the following universal property: for any A-module M and any k-derivation

d € Derg(A, M), there exists a unique A-module morphism ¢ : Q,l4/k — M such that the following diagram
commutes:
A—2t M

e
dA/k‘ ///;; (4)

Qs
Remark 9. The universal property is equivalent to saying that there is a natural bijection
HomA(Q}L‘/k,M) — Dery(A, M) defined by 1+ odyyy.
In fact, it is equivalent to saying that the functor
Deri(A,—) : AMod — sMod defined by M +— Dery(A4, M)

is representable and it is represented by 9}4 /K Hence 934 /k is unique up to isomorphism; we call it the module
of Kahler differentials of A over k.

Proposition 10. Let A be a k-algebra (k not necessarily a field). The module of Kéahler differentials of A over
k, satisfies the following properties:

1. Q=0

2. If k' is a k-algebra and we set A’ := k' @ A, then Q}L‘,/k, = Q}L‘/k.
3. If S C A is a multiplicatively closed set, then S‘l(Qz/k) > Q}g,lA/k,

4. If B is another k-algebra, then thB/k = Qh/k X QlB/k.

5. If A — B is a k-algebra homomorphism, then we have the exact sequence

Q) ®a B —— Qp ) —— Qp,y —— 0.

6. If A — B is a surjective k-algebra homomorphism with kernel I C A, then we can the above exact sequence
to the left as

I/ —— Q) ®4 B —— Qp, —— 0.
7. If A — k is a surjective k-algebra homomorphism with kernel I C A, then we have a canonical isomorphism
Oy = 1/12.
We can now state and prove the characterization of étale algebras in terms of their Kahler differentials.
Theorem 11. Let A be a finite k-algebra. Then A is étale if and only if Qi/k =0.
Proof. Set A :=Fk @y, A.
(=) By Theorem 6, we know that A =k x --- x k. Hence
k@ Q) %Q%/l—c %Q}WQ X e X Q/%/E =0.

Hence Qh/k =0.



(<=) Let my,...,m, be the maximal ideals of A. By Corollary 2, we can write A = [[ A; where A; = A/m}
are finite k-algebras that are local. By assumption

SO Qxl%/k = 0 for all i. Since k = k, then A;/m; = k. Thus the projection map A; — A;/m; = k tells us
that 9}4 p =My /m? canonically. Hence m; = m? so that Nakayama’s Lemma implies that m; = 0. That
is, A; = k so that A is diagonalizable, hence étale.

For the case when k # k, the above argument says that A is étale, i.e. reduced. For any algebraic
extension K of k, we have K ®; A — A so that K ®; A is reduced. Thus A is étale.

O

4 Etale Group Schemes

Let X = SpecA be an affine scheme over k. We say the X is étale if A is an étale k-algebra. Then we have the
following scheme-theoretic version of Theorem 6.

Theorem 12. Let X = SpecA be an affine scheme finite over k, i.e. A is a finite k-algebra. Then the following
are equivalent:

1. X is étale.
2. X 1is geometrically reduced.
3. X is smooth.

Proof. 1f A is an étale, then k®y Ais reduced, i.e. X is geometrically reduced. If X is geometrically reduced,
then £ ® A is reduced and thus K ®; A — k ®k A is as well for any algebraic extension K of k. Hence A is
étale.
For p € Spec(A), we have T, X = (m,/m2)". Since A, — A,/m, = k is surjective, then
(T,X)" = mp/mgzo = Q,laxp/k = (Q}Lx/k)r“
Thus
dimp T,X =0 Vp <= (Qyp)p=0 ¥ << Q,, =0
Thus if X is smooth, then dim 7, X = dim X
O

Now let us work with group schemes. Let G be a finite group scheme over k, so G = SpecA for a Hopf
algebra A which is a finite k-algebra. In this case, A is finite dimensional over k, so we define the order of G to
be

0(G) := dimg(A).

The order of a finite group scheme determines its smoothness.
Theorem 13. Let G be a finite group scheme over k. If o(G) is invertible in k, then G is étale.
Proof. We separate into two cases:
1. (char(k) = 0) In this case, Cartier’s theorem states that G is smooth hence étale by Theorem 12.
2. (char(k) = p) Consider the following map:
ér: A—> A defined by ar— a” .

This map is the p"th Frobenious map and it is a k-algebra homomorphism since char(k) = p. Since A is
noetherian, then its nilradical N is annihilated by some exponent n > 0 (see the proof of corollary (2)).
So if r is such that p” > n, then ¢,(A) = AP" is reduced. Thus for sufficiently large r, the image of the
Frobenious map is smooth.

O
The galois theory of étale algebras translates to the theory of group schemes as follows.

Theorem 14. The functor X — X (k°°P) is an equivalence between the categories of étale schemes over k and
the category of finite discrete G-sets. Moreover, the functor G — G(k®P) is an equivalence between the category
of finite étale group schemes and finite (discrete) groups with a continuous action of Gal (k*P /k).



