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1 Notation and Preliminaries

The following notation will be fixed:

• K is a number field, i.e. a finite extension of Q.

• L is a finite Galois extension of K, of degree n and Galois group G := Gal(L/K).

• OK and OL will denote the ring of integers of K and L respectively.

• p ⊂ OK is a nonzero prime ideal and P ⊂ OL is a nonzero prime lying over p, that is
P ∩ OK = p.

• k := OK/p and ` := OL/P are the residue fields of p and P respectively. In particular, k
is a finite field and we denote its size by q, so q = pν for some ν ≥ 1 and p ∈ Z the prime
number such that p ∩ Z = pZ. Furthermore, `/k is a finite extension of finite fields and
is thus a Galois extension.

• (Fundamental Identity) Since L/K is Galois, then the (unique) factorization of the ex-
tension pOL ⊂ OL is of the form

pOL = Pe
1 · · ·Pe

g

where P1, . . . ,Pg ⊂ OL are nonzero prime ideals and

n = efg

where
f = [OL/P1 : OK/p] = · · · = [OL/Pg : OK/p]

is the inertia degree and e is the ramification index.

Next we go over the basic facts and definitions required to state and use the Chebotarev Density
Theorem.

Theorem 1.1. Let {P1. . . . ,Pg} be the set of prime ideals of OL lying above p. Then the
Galois group G acts transitively on this set via:

Gy {P1. . . . ,Pg} with σPi = {σ(x) | x ∈ Pi}.

Definition. The decomposition group of P over p is the stabilizer of P under the action defined
in Theorem 1.1. More precisely:

D(P) := D(P/p) = {σ ∈ G | σP = P}
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Remarks 1.2. (about the Decomposition Group)

(1.2.1) If σ ∈ G, then
D(σP) = σD(P)σ−1.

This is a general phenomenon that occurs when conjugating stabilizers of elements under
group actions.

(1.2.2) By the Orbit-Stabilizer Theorem,1 the number of distinct primes lying above p is equal
to the index of the decomposition group. More precisely[

G : D(P)
]

= g. (1)

Plugging this into the fundamental identity, we get

efg = n = |G| = |D(P)| · [G : D(G)] = |D(G)|g =⇒ |D(G)| = ef. (2)

(1.2.3) By (1), we conclude that

D(P) = {1} ⇐⇒ p splits completely.

Intuitively speaking, the smaller D(P) is, the more primes p splits into inside L.

(1.2.4) Similarly, we have

D(P) = G ⇐⇒ p is nonsplit ⇐⇒ pOL = Pe.

This case includes the case when p is totally ramified or when p is inert.

(1.2.5) If σ ∈ D(P), then by definition σ descends to an automorphism

σ : ` −→ ` defined as σ(x+ P) = σ(x) + P.

Then, the restriction map

res : D(P) −→ Gal(`/k) defined by σ 7→ σ

is a surjective group homomorphism.2

Definition. The inertia group of P over p, denoted by I(P) is the kernel of the restriction
map defined in (1.2.5). More explicitly,

I(P) := {σ ∈ D(P) | σ(x) ≡ x (mod P) ∀x ∈ OL}

Remarks 1.3. (about the inertia group)

(1.3.1) Since the restriction map is surjective, it factors through the quotient D(P)/I(P) as an
isomprhism onto Gal(`/k). In particular:[

D(P) : I(P)
]

= f.

Plugging this into (2) yields
|I(P)| = e.

(1.3.2) A trivial but useful consequence of the above, is:

I(P) = {1} ⇐⇒ p is unramified.

In words, the inertia group of P over p measures the ramification of p in L.

(1.3.3) By definition of the inertia group, we have the following short exact sequence:

1 I(P) D(P) Gal(`/k) 1res

1See Proposition 2 of §4.1 of [DF04].
2See Proposition 9.4 of Chapter 1 of [Neu99]

2



2 Frobenius Elements

We know that `/k is a finite extension of finite fields and hence Galois. In fact, the extension
is cyclic, that is

Gal(`/k) = 〈ϕq〉
where q = |k| and ϕq is the Frobenius automorphism defined by ϕq(x) = xq. Now, if p is
unramified, then the restriction map is an isomorphism and thus there is a unique element of
D(P) that maps to ϕq. This element, is very important.

Definition. Suppose p is unramified and let P be a prime lying over p. The Frobenius element
of P | p, denoted by (P, L/K), is the unique element of D(P) that restricts to the Frobenius
automorphism ϕq, that is

(P, L/K) := res−1(ϕq).

More precisely, σ = (P, L/K) is the unique element of D(P) that satisfies:

∀x ∈ OL, σ(x) ≡ xq (mod P)

Remarks 2.1. (about Frobenius elements)

(2.1.1) Similarly to (1.2.1), we have

(τP, L/K) = τ(P, L/K)τ−1 (τ ∈ G).

Therefore, since G acts transitively over the set of primes lying above p (see Theorem
1.1), then the conjugacy class of σ := (P, L/K) is:

{τστ−1 | τ ∈ G} = {(τP, L/k) | τ ∈ G} = {(Pi, L/K) | i = 1, . . . , g}.

(2.1.2) In view of the above remark, we can slighlty generalize the definition of the Frobenius
element as:

(p, L/K) := {(Pi, L/K) | i = 1, . . . , g}.
We make the standard abuse of notation and write (p, L/K) = (P, L/K) for some P | p
whenever (P, L/K) ∈ Z(G) and thus its conjugacy class is trivial.

(2.1.3) Since p is unramified in L/K, then D(P) ∼= Gal(`/k) and thus D(P) is cyclic and
generated by the Frobenius element, i.e.

D(P) =
〈
(P, L/K)

〉
.

(2.1.4) A trivial but important consequence of the above remark and (1.2.3) is that:

p splits completely ⇐⇒ (P, L/K) = 1 for some P | p.

Examples 2.2. (of Frobenius elements)

(2.2.1) (Quadratic Case) Let L = Q(
√
d) and K = Q. Observe that the extension is Galois

with Galois group G ∼= {1,−1} ∼= Z/2Z and in particular it is an abelian extension. The
discriminant is d (resp. 4d) if d ≡ 1 (mod 4) (resp. d 6≡ 1 (mod 4)). So let p ∈ Z be an
odd prime such that p - d. Then p := pZ is unramified in Q(

√
d) and σ := (p,Q(

√
d)/Q)

is a well-defined element of G. By (2.1.4), we have

σ = 1 ⇐⇒ p splits completely in Q(
√
d) ⇐⇒ d is a square in (Z/pZ)×.

Since being a square in (Z/pZ)× is characterized by the Legendre symbol, we conclude
that (

pZ,Q(
√
d)/Q

)
=

(
d

p

)
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(2.2.2) (Cyclotomic Case) Let L = Q(ζ) where ζ is a primitive mth root of unity, and K = Q.
Then a prime number p ∈ Z ramifies in Q(ζ) if and only if p | m (cf. Corollary 10.4 of
§1 of [Neu99]), so we may assume that p - m. We also know that G ∼= (Z/nZ)× via the
isomorphism

τ 7→ j where τ(ζ) = ζj.

In particular Q(ζ) is abelian and thus σ := (pZ,Q(ζ)/Q) is a well-defined element of G.
In fact, the Frobenius element σ is defined as σ(ζ) = ζp.

Indeed, let P be a prime of Q(ζ) lying over pZ, and x ∈ OL = Z[ζ] written in terms of
the integral basis as x =

∑
ajζ

j where aj ∈ Z. Then:

σ(x) =
∑

ajσ(ζ)j =
∑

ajζ
pj ≡

∑
apjζ

jp
j ≡

(
ajζ

j
)p

= xp (mod pZ[ζ])

and thus σ(x) ≡ x (mod P) as required. This also proves that σ ∈ D(P) since P is a
prime ideal. Note that viewed as an element of (Z/nZ)×, the Frobenius element is just p
mod n.

Remark 2.3. Example (2.2.2) implies the quadratic reciprocity law, see Example 8.18 and its
applications in [Mil17].

3 Computing Galois Groups

Identifying Frobenius elements and their cycle types (viewed as permutations of the roots
of some polynomial) can help us determine the Galois group of the splitting field of some
polynomial. The set up is the following:

• F ∈ OK [x] is a monic polynomial of degree N .

• There is a reduction homomorphism OK [x] → k[x] which we write as F 7→ F , where
F ∈ k[x] is the polynomial whose coefficients are the reduction mod p of the coefficients
of F .

• L/K is the splitting field of F with Galois group G.

• If {α1, . . . , αN} are the roots of F in L, we identify G with a subgroup of the permutation
group SN acting by permutations on the set of roots.

Then we have the following useful result:

Theorem 3.1. (Dedekind) Let F (x) ∈ OK [x] be monic and let L be the splitting field of F
over K. Suppose that F ∈ k[x] is square-free and factors as a (linear) product of irreducibles
in k[x] as

F = F1 · · ·Fr, (Ni := degFi)

Then for any prime ideal P of L lying over p, the Frobenius element σ = (P, L/K) is a disjoint
product of r cycles of lengths N1, . . . , Nr.

Remarks 3.2. (about Dedekind’s Theorem)
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(3.2.1) The assumptions on the factorization F = F1 · · ·Fr imply that p is unramified in L since
F is square-free in (OK/p)[x]; p cannot ramify as this would introduce a square term in
the factorization.3 This implies that the Frobenius element σ is well-defined.

(3.2.2) Dedekind’s Theorem says that you can read the cycle type of (P, L/K) off of the factor-
ization of F modulo P ∩ OK .

Proof. Let σ = (P, L/K) be a Frobenius element. The choice of prime P lying over p does
not affect the conclusion of the theorem since any two choices are conjugate by (2.1.1) and
conjugate permutations have the same cycle structure.

Recall that ϕq = res(σ) = σ is the Frobenius automorphism in G := Gal(`/k) and thus acts
on the set of roots {β1, . . . , βN} ⊂ ` via permutations. Now, write F (x) = (x− β1) · · · (x− βN)
and, for any subset of roots Ω ⊆ {β1, . . . , βN}, define

FΩ(x) :=
∏
β∈Ω

(x− β).

Furthermore, FΩ is fixed under the action of G:

ϕqFΩ :=
∏
β∈Ω

(x− ϕq(α)) =
∏

β∈ϕqΩ

(x− β)

if and only if Ω = ϕqΩ, i.e. Ω is stable under the action of G. If FΩ is fixed under the action
of G, then its coefficients are in k and thus the divisibility condition FΩ | F happens in k[x].
Since Ω′ ⊆ Ω implies that FΩ′ | FΩ, then FΩ is an irreducible factor of F if and only if, Ω is
minimal among stable subsets of {β1, . . . , βN}, i.e. an orbit of the action. Thus, if there are r′

orbits, the ith orbit of length N ′i , then:

F = FΩ1 · · ·FΩr′

where each FΩi
is irreducible of degree N ′i . By uniqueness of factorization in k[x], we must have

r = r′ and Ni = N ′i .
From elementary group theory, we know that partition of {β1, . . . , βN} into orbits corre-

sponds exactly with the cycle decomposition of ϕq in G. Finally, since G ∼= D(P) (since p is
unramified), we have that σ has the same cycle structure as ϕq.

Examples 3.3. (of Dedekind’s Theorem)

3This is easily verified trivially true if OL = OK [α] for some root α and F irreducible, because under these
assumptions we have

OL

pOL

∼=
OK [x]/(F )

pOK [x]/(F )
∼=
k[x]

(F )
∼=
k[x]

(F1)
× · · · × k[x]

(Fr)

where each factor on the RHS is a field. Thus the prime factorization of pOL is

pOL = (p + F1(α)) · · · (p + Fr(α)).

and p is thus unramified.

5



(3.3.1) Let K = Q and consider F (x) = x4 + x− 1. We factor F modulo the following primes:

F (x) ≡



x4 + x− 1 (mod 2)

x4 + x− 1 (mod 3)

x4 + x− 1 (mod 5)

(x+ 3)(x3 + 4x2 + 2x+ 2) (mod 7)

(x+ 3)(x3 + 8x2 + 9x+ 7) (mod 11)

(x+ 2)(x3 + 11x2 + 4x+ 6) (mod 13)

(x+ 12)(x+ 15)(x2 + 7x+ 5) (mod 17)

x4 + x− 1 (mod 19)
...

(x2 + 15x+ 32)(x2 + 56x+ 51) (mod 71)
...

Therefore, if Pp is a prime lying over pZ, then the cylce type of σp := (Pp, L/K) is:

σ2 = (∗ ∗ ∗∗), σ7 = (∗ ∗ ∗), σ17 = (∗∗), σ71 = (∗∗)(∗∗)

Thus we have that the Galois group G ⊆ S4 contains a 4-cycle, a 3-cycle and a transpo-
sition. This implies that G = S4.

(3.3.2) Let K = Q and consider F (x) = x5 − x− 1. We factor F modulo the following primes:

F (x) ≡



(x2 + x+ 1)(x3 + x2 + 1) (mod 2)

x5 − x− 1 (mod 3)

x5 − x− 1 (mod 5)

(x2 + 6x+ 3)(x3 + x2 + 5x+ 2) (mod 7)

x5 − x− 1 (mod 11)

x5 − x− 1 (mod 13)

(x+ 9)(x+ 11)(x3 + 14x2 + 12x+ 6) (mod 17)

(x+ 6)2(x3 + 7x2 + 13x+ 10) (mod 19)

(x+ 9)(x4 + 14x3 + 12x2 + 7x+ 5) (mod 23)

(x+ 27)(x4 + 2x3 + 4x2 + 8x+ 15) (mod 24)
...

(x+ 53)(x2 + 31x+ 65)(x2 + 50x+ 55) (mod 67)
...

Therefore, if Pp is a prime lying over pZ, then the cylce type of σp := (Pp, L/K) is:

σ2 = (∗∗)(∗ ∗ ∗), σ3 = (∗ ∗ ∗ ∗ ∗), σ17 = (∗ ∗ ∗), σ23 = (∗ ∗ ∗∗), σ67 = (∗∗)(∗∗)

Observe that σ3
2 is a transposition. Thus we have that the Galois group G ⊆ S5 contains

a 5-cycle, a 4-cycle and a transposition. This implies that G = S5.

In these examples we are fortunate to get enough cycle types in our Galois group to be able
to conclude that G must be the full permutation group. However, we don’t have a guarantee (at
least not yet) that any given cycle type will appear, so this ad hoc method may not always give
us an answer for the Galois group. To illustrate this, consider the case of cubic polynomials.
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The Galois group of a cubic polynomial is a subgroup of S3 of which there are only four:

S3

A3 C2

1

⊇⊆

⊇ ⊆

whose elements have cycle types:

(∗), (∗∗), (∗ ∗ ∗)

(∗), (∗ ∗ ∗) (∗), (∗, ∗)

(∗)

Thus, if F is a cubic, and we find two primes p1, p2 where F (mod p1) is irreducible, and
F (mod p2) factors into a quadratic and linear factor, then the Galois group must be S3 as S3

is the only subgroup that has both (∗∗) and (∗ ∗ ∗) as possible cycle types.
However, if every time we factor F modulo p we never get a factorization of the type

F (x) ≡ (x + a)(x2 + bx + c) (mod p), then we should expect the Galois group to be A3. For
example, consider the polynomial

F (x) = x3 − 3x− 1

Then we have:

F (x) ≡



x3 − 3x− 1 (mod 2)

(x+ 2)3 (mod 3)

x3 − 3x− 1 (mod 5)

x3 − 3x− 1 (mod 7)

x3 − 3x− 1 (mod 11)

x3 − 3x− 1 (mod 13)

(x+ 7)(x+ 13)(x+ 14) (mod 17)

(x+ 3)(x+ 7)(x+ 9) (mod 19)

x3 − 3x− 1 (mod 23)

x3 − 3x− 1 (mod 24)
...

It apears that the only reductions of F modulo p that we have are either irreducible or split
(corresponding to the cycle types (∗ ∗ ∗) and (∗) respectively). This suggests that the Galois
group is A3, but from these calculations, there is no reason to assume that no other type of
factorization will appear. This question is answered by the Chebotarev Density Theorem.

4 The Chebotarev Density Theorem

Definition. Let P denote the set of all finite primes of K and let S ⊆ P and subset. We say
that S has Dirichlet density δ if

δ = δ(S) = lim
X→∞

#{p ∈ S | N(p) ≤ X}
#{p ∈ P | N(p) ≤ X}
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where N(p) := #(OK/p) is the ideal norm of p.

Theorem 4.1. (Chebotarev) Let C be a conjugacy class in G. Then the set

Ξ = ΞC = {p ∈ P | (p, L/K) = C}

has Dirichlet density

δ = δ(ΞC) =
#C
#G

.

See Theorem 6.4 in chapter V of [Neu86] for a proof.

Remarks 4.2. (about the Chebotarev Density Theorem)

(4.2.1) If L/K is abelian, then #C = 1 for all conjugacy classes in G and thus δ(ΞC) = 1/n for
all conjugacy classes.

(4.2.2) If we set C = 1, then δ(ΞC) = 1/n. In view of (2.1.4), this means that 1
n

of all primes p
split completely in L. This yields another proof of the fact that infinitely many primes
split completely.

(4.2.3) By a result of Lagarias and Odlyzko (see for example Theorem 1.1 of [MOL79]), there
exists an absolute, effectively computable constant A (independent of K and L) such that
for all conjugacy classes C ⊆ G, there exists a prime ideal p of K such that (p, L/K) = C
and

N(p) ≤ 2∆A
L

where ∆L is the number field discriminant of L/K. In words, this means that if a certain
cycle type hasn’t appeared as a Frobenius element of some p for N(p) ≤ 2∆A

L , then it
cannot appear at all.

Examples 4.3. (of the Chebotarev Density Theorem)

(4.3.1) If L/K is a quadratic extension, G ∼= (Z/2Z) and thus there are only two conjugacy
classes: C = {1} gives the primes that split completely by (2.1.4); C = {−1} then the
Frobenius element is nontrivial and thus doesn’t split so this gives primes that are inert
(since theu must be unramified). In conclusion, 1

2
of the primes of K split completely in

L and the other 1
2

remain inert.

(4.3.2) If L = Q(ζ) is a cyclotomic extension, then G ∼= (Z/mZ)× is abelian. By example (2.2.2),
the Frobenius element/conjugacy class of the prime p is simply p (mod m) ∈ (Z/mZ)×.
Thus for each element of G, i.e. residue class modulo m, there are 1/#(Z/mZ)× many
primes in that residue class. This is the celebrated Dirichlets Theorem on Primes in
Arithmetic Progressions. Thus the Chebotarev Density Theorem generalizes Dirichlet’s
Theorem.

(4.3.3) If F is a cubic polynomial with coefficients in Q, and L is the splitting field, then F will
have the following behavior modulo primes:

(G = 1) F will split modulo all primes.

(G ∼= C2) F will split modulo 1
2

of the primes and F will have an irreducible quadratic factor
modulo 1

2
of the primes p, corresponding to the cycle type (p, L/Q) = (∗∗).

(G ∼= A3) F will split modulo 1
3

of the primes and F will be irreducible modulo 2
3

of the primes,
corresponding to the cycle type (p, L/Q) = (∗∗∗); there are two 3-cycles in A3, each
one corresponds to one conjugacy class of density 1

3
.
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(G ∼= S4) F will split modulo 1
6

of the primes; will have a quadratic factor modulo 1
2

of the
primes; will remain irreducible modulo 1

3
of the primes.

So if we reconsider F (x) = x3− 3x− 1 as in §3, and graph the proportion of primes p for
which F (mod p) is irreducible, we get Figure 1 below. By looking at the graph, we can
see that the proportion of irreducible reductions tends to 2

3
and thus we can comfortably

guess that the Galois group is indeed A3. In fact, if enough primes are checked, then
Lagarias-Odlyzko will guarantee that G ∼= A3.

Figure 1: Proportion of primes for which x3 − 3x− 1 is irreducible modulo p.
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