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1 The group ring ZG
In this paper, we fix the following notation:

• G is a group.

• ZG is the integral group ring of G; it is the free abelian group generated by the elements
of G with the following ring multiplication law:(∑

g∈G

ngg

)(∑
h∈G

mhh

)
=
∑
h∈G

(∑
g∈G

ngmg−1h

)
h.

• GMod is the category of G-modules which we can identify with the category of left
ZG-modules.

• Ab is the category of abelian groups.

• A is an abelian group and a G-module.

• Z is considered throughout as a trivial G-module.

• ε : ZG → Z is the augmentation map defined to be the surjective G-module map and
ring homomorphism,

ε

(∑
g∈G

ngg

)
:=
∑
g∈G

ng,

and the kernel IG := ker ε is the augmentation ideal; it is a two-sided ideal of ZG.
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Proposition 1.1. We have the following short exact sequence of G-modules (with G-module
maps):

0 IG ZG Z 0.ε

Proof. Clear from the definitions.

Proposition 1.2. The additive group (IG,+) of the augmentation ideal is the free abelian group
generated by the set {g − 1 | g ∈ G \ {1}}.

Proof. Let z =
∑
ngg ∈ ZG, then z ∈ IG if and only if

∑
ng = 0. Thus, if z ∈ IG, we have:

z = z − 0 · 1 =
(∑
g∈G

ngg
)
−
(∑
g∈G

ng

)
· 1 = (ng − ng) · 1︸ ︷︷ ︸

=0

+
∑

g∈G\{1}

ng(g − 1)

and thus z is in the additive group generated by {g−1 | g ∈ G\{1}}. Clearly, every g−1 ∈ IG
since ε(g − 1) = 1− 1 = 0. Thus (IG,+) = 〈g − 1 | g 6= 1〉 as required.

2 Right Derived Functors and the Cohomology of Groups

We start with an additive covariant functor F : GMod → Ab, an object A ∈ GMod and an
injective resolution:

I := 0 A I0 I1 I2 · · ·η d0 d1

of A. If we delete A from the cochain complex above, and apply F , we obtain the cochain:

F I = 0 F (I0) F (I1) F (I2) · · ·Fd0 Fd1

We can thus compute the cohomology groups of F I. Furthermore, if f : A → A′ is a G-
module homomorphism, and I′ is an injective resolution for A′, f extends to a cochain map
f̌ : I → I′ which is unique up to homotopy (this is the Comparison Theorem); since F is
additive, then F f̌ is also unique up to homotopy and thus descends to a well-defined map
Hn(F f̌) : Hn(F I)→ Hn(F I′). This means we can define the following sequence of functors:

Definition 2.1. With the notation as above, define the nth (covariant) right derived functor
of F is the functor

RnF : GMod −→ Ab

defined on objects as
(RnF )(A) = Hn(F I)

and defined on morphisms as
(RnF )(f) = Hn(F f̌)
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Example 2.2. A fundamental example of this construction is the right derived functors of the
covariant hom functor. More precisely, if B ∈ GMod and F := HomG(B,−), then the nth
derived functor of F is denoted by

ExtnZG(B,−) := RnF .

A special and fundamental case is when B is the trivial G-module Z. In fact, this example
gives rise to group cohomology:

Definition 2.3. The nth cohomology group of G with coefficients in A is defined as

Hn(G,A) = ExtnZG(Z, A)

where Z is viewed as a trivial G-module.

Remark 2.4. Since the covariant Hom functor HomG(Z,−) is naturally isomorphic to the
fixed-point functor A 7→ AG = {a ∈ A | g.a = a, ∀g ∈ G}, then we can also define Hn(G,A)
to be the nth right derived functor of the fixed-point functor.

The major problem of the definition of Hn(G,A) is that calculating injective resolutions for
an arbitrary G-module A is hard. Fortunately, we can swap the roles of A and Z in order to
use projective resolutions which are much easier to calculate. We make this statement more
precise:

Let G : GMod → Ab be a contravariant additive functor, let B ∈ GMod and fix a
projective resolution

P := · · · P2 P1 P0 B 0.
d2 d1 ε

After deleting B from the chain complex, we apply G , which is contravariant, to obtain the
cochain complex

G P = 0 G (P0) G (P1) G (P2) · · ·G d0 G d1

Similarly as above, a G-module homomorphism f : B′ → B extends to a chain map f̌ : P→ P′

which is unique up to homotopy. Since G is additive and contravariant, then G f̌ : G P′ → G P
is also unique up to homotopy and thus descends to a well-defined map Hn(G f̌) : Hn(G P′)→
Hn(G f̌) on cohomology. We can thus define the contravariant right derived functors in exactly
the same way as the covariant right derived functors:

Definition 2.5. With the notation as above, the nth (contravariant) right derived functor of
G is the contravariant functor

RnG : GMod −→ Ab

defined on objects as
(RnG )(B) = Hn(G P)

and defined on morphisms as
(RnF )(f) = Hn(G f̌)
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Example 2.6. If A ∈ GMod and G := HomG(−, A) is the contravariant hom functor, then
the nth derived functor of G is denoted by

extnZG(−, A) := RnG .

The relationship between Ext and ext is given by the following important theorem:

Theorem 2.7. Let A and B be G-modules, let I be an injective resolution of A and P be a
projective resolution of B. Then for all n, we have

ExtnZG(B,A) = Hn(HomG(B, I)) ∼= Hn(HomG(P, A)) = extnZG(B,A).

The above theorem gives us a method to calculate the cohomology groups of G with coeffi-
cients in A without having to calculate injective resolutions for A:

1. Calculate a projective G-module resolution for the trivial G-module Z.

2. Apply the contravariant hom functor HomG(−, A) to the projective resolution.

3. Compute the cohomology groups of the resulting projective resolution.

3 The Cohomology of Finite Cyclic Groups

For the rest of the paper, assume that:

G is a finite cyclic group of order k generated by x ∈ G.

In this section we compute Hn(G,A) for finite cyclic G. In view of Theorem 2.7, there are
three steps to be made which we separate into different subsections.

3.1 A Projective G-module Resolution of Z
The projective G-module resolution for Z will in fact be a free 2-periodic projective resolution.
The alternating differentials will simply be multiplication by special elements of ZG, namely:

Definition 3.1. Define elements N,D ∈ ZG as

N = 1 + x+ · · ·+ xk−1, D = x− 1,

and define the multiplication maps

µN : ZG −→ ZG, µN(z) = Nz and µD : ZG −→ ZG, µD(z) = Dz.

Lemma 3.2. The maps µN and µD are G-module maps and µNµD = µDµN = εµD = 0.
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Proof. Observe that since Z and G are commutative, then ZG is commutative. Thus

µN(zw) = N(zw) = z(Nw) = zµN(w) ∀z, w ∈ ZG

so that µN (and equivalently µD) are G-module homomorphisms. Again by commutativity we
trivially have µDµN = µNµD.

Now, since x has order k,

ND = (1 + x+ · · ·+ xk−1)(x− 1) = xk − 1 = 1− 1 = 0.

Therefore
µNµD(z) = N

(
µD(z)

)
= N(Dz) = (ND)z = 0z = 0.

We have shown that µNµD = µDµN = 0. Finally, if z ∈ ZG, then since ε is a ring homomor-
phism:

εµD(z) = ε(Dz) = ε
(
(x− 1)z

)
= ε(x− 1)ε(z) = (1− 1)ε(z) = 0.

Thus εµD = 0 as required.

Proposition 3.3. Z admits the following projective (indeed free) G-module resolution:

· · · ZG ZG ZG ZG ZG Z 0
µN µD µN µD ε (1)

Proof. By Lemma 3.2, we have that (1) is a chain complex. So we only need to show that the
sequence is exact. First we label the terms of the sequence:

· · · ZG︸︷︷︸
n=4

ZG︸︷︷︸
n=3

ZG︸︷︷︸
n=2

ZG︸︷︷︸
n=1

Z︸︷︷︸
n=0

G Z︸︷︷︸
n=−1

0.
µN µD µN µD ε

Notice that the resolution is 2-periodic after the n = 0 term. So exactness at any odd (resp.
even) n is identical to exactness at n = 1 (resp. n = 2). Thus we only need to prove exactness
at n = −1, 0, 1 and 2:

(n = −1) ε is surjective.

(n = 0) By lemma 3.2, we already have that εµD = 0 so that imµD ⊆ ker ε = IG. To prove the
other containment, we only need to observe that proposition 1.2 tells us that

IG = 〈g − 1 | g ∈ G \ {1}〉
=
〈
x` − 1 | 0 < ` < k

〉
=
〈
D(x` + · · ·+ x+ 1) | 0 < ` < k

〉
⊆ im(µD).

(n = 1) By lemma 3.2, we already have that µDµN = 0 so that imµN ⊆ kerµD. To prove the
other containment, let z ∈ kerµD and write it as:

z =
k−1∑
`=0

n`x
`.
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Then

0 = Dz = (x− 1)
( k−1∑
`=0

n`x
`
)

= (nk−1 − n0) + (n0 − n1)x+ · · ·+ (nk−2 − nk−1)xk−1.

Since ZG is a free abelian group with basis G = {1, x, . . . , xk−1}, the above relation forces

n0 = n1 = · · · = nk−1;

call n ∈ Z the common value. This implies:

z =
k−1∑
`=0

nx` =
( k−1∑
`=0

x`
)
n = Nn = µN(n) ∈ im(µN)

as required.

(n = 2) By definition of the product in ZG we have

Nz =
( k−1∑
`=0

x`
)( k−1∑

i=0

nix
i
)

=
k−1∑
`=0

( k−1∑
i=0

ni

)
x` =

k−1∑
`=0

ε(z)x` = ε(z)N.

Thus, since {1, x, . . . , xk−1} is a Z-basis of ZG then

z ∈ kerµN ⇐⇒ 0 = Nz =
k−1∑
`=0

ε(z)x` ⇐⇒ ε(z) = 0 ⇐⇒ z ∈ IG.

In step n = 0, we already showed that IG = im(µD) so we conclude that kerµN = imµD
as required.

3.2 The Cochain Complex 0→ HomG(ZG,A)→ HomG(ZG,A)→ · · ·
The next step in computing Hn(G,A) is to apply the contravariant hom functor HomG(−, A)
to the deleted projective resolution

P := · · · ZG ZG ZG ZG ZG 0
µN µD µN µD

of Corollary 3.3 to get the cochain:

HomG(P, A) = 0 HomG(ZG,A) HomG(ZG,A) HomG(ZG,A) · · ·
µ∗D µ∗N

where µ∗N and µ∗D are the pullbacks of µN and µD respectively; for example µ∗N(f) = fµN .
However, this cochain can be safely changed to a simpler one:
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Proposition 3.4. The cochain HomG(P, A) is isomorphic to the cochain

Q := 0 A A A A A · · ·µD µN µD µN

where µN(a) = N.a and µD(a) = D.a. In particular we have that

Hn(HomG(P, A)) ∼= Hn(Q) ∀n ≥ 0. (2)

Proof. Observe that the covariant hom functor HomZG(ZG,−) : GMod → Ab can actu-
ally be viewed as a functor with codomain GMod. Indeed, since ZG is commutative, then
HomZG(ZG,A) has a natural G-module structure. Under this convention, HomZG(ZG,−)
is naturally equivalent to the identity functor on GMod under the natural equivalence τ :
HomZG(ZG,−)→ id

GMod defined by:

τA : HomZG(ZG,A) −→ A with f 7→ f(1).

We write the inverse of τA as fa := τ−1A (a) where fa(z) = za.
Thus if we apply this functor to the cochain complex HomG(P, A), we get a cochain complex

0 HomG(ZG,A) HomG(ZG,A) HomG(ZG,A) · · ·

0 A A A · · ·

µ∗D

τA

µ∗N

τA τA

d0 d1

(3)

whose differentials are defined as (for example)

d1(a) = τAµ
∗
Nτ
−1
A (a) = τAµ

∗
N(fa) = τA(fAµN) = faµN(1) = fa(N) = Na = µN(a).

Thus the bottom row of (3) is exactly Q and HomG(P, A) ∼= Q as required.

Remark 3.5. We know that P is 2-periodic after the 0th term (this is clear from the definition)
and thus Q is also 2-periodic. This means that the cohomology groups after the 0th cohomology
group only depend on the parity of the term. More precisely:

H1(Q) = H3(Q) = H5(Q) = · · · = H2n+1(Q) = · · ·
H2(Q) = H4(Q) = H6(Q) = · · · = H2n(Q) = · · ·

Remark 3.6. If instead of applying HomG(−, A) to the deleted chain complex P we apply the
covariant functor −⊗ZG A we obtain the chain complex:

P⊗ ZG = · · · ZG⊗ZG A ZG⊗ZG A ZG⊗ZG A 0.
µN⊗idA µD⊗idA

Taking the nth homology of this chain complex yields the nth left derived functor of −⊗ZG A
which is by definition TorZGn (Z, A) which in turn is the definition of the nth cohomology group
of G with coefficients in A.

Furthermore, we can follow the same proof of Proposition 3.4 using the natural equivalence

id
GMod

∼= (ZG⊗ZG −)
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to obtain a chain complex

Q′ := · · · A A A A 0
µD µN µD

whose homology is easier to compute. See remark 3.9.

Remark 3.7. IfG = Gal(L/K) is the Galois group of a cyclic abelian extension (e.g. Q(
√
d)/Q,

Q(e2πi/p)/Q or a finite extension of finite fields), generated by σ and we write A := L× multi-
plicatively, then for α ∈ L× we have

µN(α) =
( k−1∑
`=0

σ`
)
.α :=

k∏
`=0

σ`(α) = NL/K(α)

where NL/K : L× → K× is the usual field norm map. This explains the choice of the letter N .

3.3 Computation of Hn(G,A)

In view of Theorem 2.7, we have that Hn(G,A) ∼= Hn(Q). To write the computations cleanly,
we introduce the following notation:

(i) NA := ker(µN) = {a ∈ A | Na = 0},

(ii) NA := im(µN) = {Na ∈ A | a ∈ A},

(iii) DA := im(µD) = {Da ∈ A | a ∈ A},

Observe that

ker(µD) = {a ∈ A | D.a = 0} = {a ∈ A | (x− 1)a = x.a− a = 0} = {a ∈ A | x.a = a}.

If a ∈ AG, then clearly a ∈ ker(µD). Conversely, if a ∈ ker(µD), then x.a = a and thus x`.a = a
by induction and thus a ∈ AG since G = {1, . . . , xk−1}. Therefore:

kerµD = AG. (4)

We can now state and prove the following:

Theorem 3.8. The nth cohomology group of G with coefficients in A is given by:

Hn(G,A) ∼=


AG if n = 0,

NA/DA if n is odd,

AG/NA if n is even.

Proof. By remark 3.5 and Hn(G,A) ∼= Hn(Q) we only need to calculate H0(G,A), H1(G,A)
and H2(G,A). We recall the cochain Q and label its terms:

Q := 0 A︸︷︷︸
n=0

A︸︷︷︸
n=1

A︸︷︷︸
n=2

A︸︷︷︸
n=3

A︸︷︷︸
n=4

· · ·µD µN µD µN
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For n = 0, (4) implies

H0(G,A) ∼= H0(Q) = kerµD/0 ∼= kerµD = AG.

For n = 1,

H1(G,A) ∼= H1(Q) =
ker(µN)

im(µD)
=

NA

DA

and for n = 2,

H2(G,A) ∼= H2(Q) =
ker(µD)

im(µN)
=

AG

NA
.

Remark 3.9. In view of Remark 3.6, the homology groups of G with coefficients in n can be
computed analogously:

Hn(G,A) ∼=


AG if n = 0,

AG/NA if n is odd,

NA/IGA if n is even.

(AG := A/IGA).

Example 3.10. Suppose G = 1, then for all A we have H0(1, A) ∼= A and Hn(1, A) = 0 for all
n > 0, because N = 1 and D = 0 so that NA = 0 and NA = A = AG.

Corollary 3.11. If A is a trivial G-module, then the nth cohomology group of G with coefficients
in A is given by:

Hn(G,A) ∼=


A if n = 0,

A[k] = {a ∈ A | ka = 0} if n is odd,

A/kA if n is even, .

Proof. Observe that if A is a trivial G-module, then

Na =
( k∑
`=0

x`
)
a :=

k−1∑
`=0

x`.a =
k−1∑
`=0

a = ka

and
Da = (x− 1)a = x.a− 1.a = a− a = 0.

Thus:

(i) AG = A,

(ii) NA = {a ∈ A | 0 = Na = ka} = A[k],

(iii) NA = im(µN) = {Na ∈ A | a ∈ A} = kA,

(iv) DA := im(µD) = {Da = 0 ∈ A | a ∈ A} = 0,
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and the corollary follows.

Example 3.12. If A = Z as a trivial G-module, then

Hn(G,Z) ∼=


Z if n = 0,

0 if 2 - n,
Z/kZ if 2 | n.

4 The Herbrand Quotient

Definition 4.1. Let A be a finite G-module. Then the Herbrand quotient of A as a G-module
is defined as

h(A) =
|H2(G,A)|
|H1(G,A)|

.

Remark 4.2. Observe that h(A) is well-defined since H2(G,A) ∼= AG/NA, by Theorem 3.8,
which is finite since A itself is finite.

Theorem 4.3. (Herbrand) If A is a finite G-module, then h(A) = 1. That is

|H2(G,A)| = |H1(G,A)|.

Proof. We compute |A| in two different ways:

|NA| = |im(µN)| = [A : kerµN ] =
|A|
|NA|

=⇒ |NA| · |NA| = |A|

and

|DA| = |im(µD)| = [A : kerµD] =
|A|

| kerµD|
(4)
|A|
|AG|

=⇒ |DA| · |AG| = |A|.

Equating both gives us

|NA| · |NA| = |DA| · |AG| =⇒ |NA|
|DA|

=
|AG|
|NA|

. (5)

Thus by Theorem 3.8 we have

|H2(G,A)| = |AG/NA| = |A
G|

|NA|
(5)
|NA|
DA

= |H1(G,A)|

as required.

Remark 4.4. In view of Theorem 3.8, Herbrand’s Theorem says that all the cohomology
groups of a finite G-module A have the same cardinality.

Remark 4.5. Theorem 4.3 is a key lemma in the proof of Tate’s Theorem in Class Field
Theory, namely if A is a G-module such that for every subgroup H ≤ G we have
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(i) H1(H,A) = 0,

(ii) H2(H,A) is cyclic of order |H|,

then there is an isomorphism
Hr(G,Z) ∼= Hr+2(G,A).

The statement used in Class Field theory is more precise as it explicitly gives the isomorphism.
This result is used to construct the Artin Map that realizes the Galois group of a finite abelian
extension of number fields as the quotient of the idéle class group of the extension.
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