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Chapter 1

Azumaya Algebras

Throughout this chapter we fix the following notation:

• R is a commutative Noetherian local ring with (unique) maximal ideal m and residue field by k := R/m.

• A is a unital ring, not necessarily commutative, with the structure of an R-algebra.

• X = (X,OX) is a locally noetherian scheme. That is, there exists an open cover X =
⋃
i∈I Ui such that

Ui ∼= SpecAi, as schemes, where each Ai is a noetherian ring.

• A is an OX -algebra, that is, it is a sheaf of abelian groups such that for each open subset U ⊆ X, the
abelian group A(U) is an OX(U)-algebra whose structure homomorphism is compatible with the sheaf
structure of A and OX .

In this chapter we describe Azumaya algebras. These can be defined over local rings and then generalized
to schemes through the local version.

1.1 Azumaya Algebras over Local Rings

The definition of Azumaya algebras over a local base ring R is slightly easier than when R is not local (more
precisely, a module being locally free is much easier to verify when R is a noetherian local domain, cf. Proposition
A.9). We will use the following definition:

Definition. We say that A is an Azumaya algebra over R if

(i) A is a free R-module of finite rank,

(ii) The map
ΨA/R : A⊗R Aop −→ EndR-mod(A) defined by a⊗ a′ 7→ (x 7→ axa′) (1.1)

is an R-algebra isomorphism.

We recall some basic properties of Azumaya algebras that we will require later.

Proposition 1.1. Let A be an R algebra.

(a) Suppose R = K is a field, then:

A is an Azumaya algebra over K ⇐⇒ A is a finite dimensional, central simple algebra over K.

(b) Let R′ be a local (commutative) R-algebra. Then

A is an Azumaya algebra over R =⇒ A⊗R R′ is an Azumaya algebra over R′.

(c) Suppose that A is a free R-module of finite rank, then

A⊗R R/m is an Azumaya algebra over R/m =⇒ A is an Azumaya algebra over R.

Proof.

(a) Being a free K-module of finite rank is equivalent to being a finite dimensional K-vector space, so the
content of this proposition is showing that condition (ii) of being an Azumaya algebra over K is equivalent
to being central and simple.
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(=⇒) Let A be Azumaya over K. First we extend {1} ⊂ A to a basis {1 = a1, . . . , an} of A over K and let
χ1, . . . , χn ∈ EndK(A) be defined on the basis elements as

χi(aj) = δij = the Kronecker delta function.

Next, let z ∈ Z(A), which can be written in the form z = r1a1 + · · ·+ rnan with ri ∈ K. Then

z = 1 · z = χ1(1) · z. (1.2)

Since A is Azumaya over K, then the map ΨA/K defined in (1.1) is a K-algebra isomorphism. Thus

∃
m∑
i=1

bi ⊗ ci ∈ A⊗Aop such that ΨA/K

(
m∑
i=1

bi ⊗ ci

)
= χ1

∴ χ1(a) =

m∑
i=1

biaci ∀a ∈ A.

Thus, since z ∈ Z(A), we have

χ1(az) =

m∑
i=1

biazci =

m∑
i=1

biaciz = χ1(a)z ∀x ∈ A.

Using this identity with a = a1 = 1 in (1.2) gives:

z = χ1(1)z = χ1(1 · z) = χ1(z) = χ1

(
n∑
i=1

riai

)
=

n∑
i=1

riδ1i = r1 ∈ K.

This proves that Z(A) ⊆ K. The other inclusion is trivial because K is commutative. We have
shown that A is central.

Next, let I ≤ A be a two-sided ideal and x ∈ I. Observe that

χ1(x) =

m∑
i=1

bixci ∈ I

since I is two-sided. This shows that χ1(I) ⊆ I; of course this argument works for any endomorphism,
that is:

χ(I) ⊆ I ∀χ ∈ EndK(A), (1.3)

since every endomorphism is “multiplication” by an element of A⊗Aop. Now, if we write x =
∑
riai,

with ri ∈ K, then each coefficient satisfies:

rj =

n∑
i=1

riδij = χj

(
n∑
i=1

riai

)
= χj(x).

The LHS is an element of K while the RHS is an element of I by (1.3). Therefore rj ∈ K ∩ I which
is an ideal of K. Since K is a field, then I ∩K = 0 or I ∩K = K. In the first case, we have that
r1 = · · · = rn = 0 and so x = 0; that is I = 0. In the second case, we would have 1 ∈ K = I ∩K ⊆ I
and hence I = A. This proves that A is simple.

(⇐=) A well-known property of central simple algebras states that if A is central simple, then both Aop

and A ⊗ Aop are central simple K-algebras (any text on central simple algebras over a field will
contain this result, see for example Proposition 2.36 of Chapter II of [Kna07]). This implies that the
K-algebra (i.e. K-linear) map

ΨA/K : A⊗K Aop −→ EndK(A)

has trivial kernel, since the kernel is always a two-sided ideal and the map is nonzero since 1 ⊗ 1
maps to the identity map. Finally, the map is an isomorphism because of the following dimension
count:

dimK(A⊗Aop) = dimK(A)2 = dimK

(
Matn×n(A)

)
= dimK

(
EndK(A)

)
where these dimensions are finite. This shows that A is an Azumaya algebra over K.
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(b) First, we tensor the map ΨA/R with idR′ to get

(ΨA/R ⊗ idR′) : (A⊗R Aop)⊗R R′ −→ EndR(A)⊗R R′.

We also have the map

ΨA⊗R′/R′ : (A⊗R R′)⊗′
R (A⊗R R′)op −→ EndR′(A⊗R R′)

We will see that they fit in the following diagram:

(A⊗R Aop)⊗R R′ EndR(A)⊗R R′

(A⊗R R′)⊗R′ (A⊗R R′)op EndR′(A⊗R R′)

ΨA/R⊗idR′

α β

ΨA⊗R′/R′

(1.4)

The left vertical arrow is a canonical isomorphism obtained by

(A⊗R Aop)⊗R R′ ∼= A⊗R (Aop ⊗R R′) ∼= A⊗R
(
R′ ⊗R′ (Aop ⊗R R′)

) ∼= (A⊗R R′)⊗R′ (A⊗R R′)op

The right vertical arrow is the R′-algebra homomorphism

β : EndR(A)⊗R R′ −→ EndR′(A⊗R R′) defined by φ⊗ 1R′ 7→ φ⊗ idR′

and this map is an isomorphism whenever A is a free R-module by Proposition A.7, which occurs in our
case since A is Azumaya over R by assumption.

The diagram (1.4) commutes. We can check this on the simple tensors of the form (a ⊗ a′) ⊗ r′ ∈
(A ⊗R Aop) ⊗R R′ since these generate the whole algebra. A straightforward computation, using the
formula for β from Proposition A.7 yields

(a⊗ a′)⊗ r′ (x 7→ axa′)⊗ r′

r′(a⊗ 1)⊗ (a′ ⊗ 1)
(
(x⊗ r) 7→ r′(a⊗ 1)(x⊗ r)(a′ ⊗ 1) = r′(axa′ ⊗ r)

)
Finally, since A is Azumaya over R, then ΨA/R is an isomorphism by assumption so the commutativity
of the diagram implies that ΨA/R ⊗ idR′ is an isomorphism as well.

(c) By setting R′ = R/m = k in (1.4) we obtain

(A⊗R Aop)⊗R k EndR(A)⊗R k

(A⊗R k)⊗k (A⊗R k)op Endk(A⊗R k)

ΨA/R⊗idk

α β

ΨA⊗k/k

(1.5)

By assumption, the bottom horizontal arrow is an isomorphism so the top horizontal arrow is an isomor-
phism as well. Furthermore, A is a free R-module of finite rank so that EndR(A) is also a free R-module
of finite rank. This means we can apply Proposition A.5 an conclude that ΨA/R is an isomorphism.

1.2 Azumaya Algebras over Schemes

We begin by extending the definition of Azumaya Algebra to schemes in the same way most commutative
algebra constructions are extended to schemes.

Definition 1. Let A be an OX -algebra. We say that A is an Azumaya Algebra over X if

(1.i) A is coherent as an OX -module,

(1.ii) For every closed point x of X, the stalk Ax is an Azumaya algebra over the local ring OX,x.

Remarks 1.2. (about Azumaya algebras over a scheme)
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(1.2.1) We may drop the requirement that x ∈ X be a closed point in condition (1.ii). That is:

Ax is Azumaya over OX,x for all closed points x ∈ X ⇐⇒ Ax is Azumaya over OX,x ∀x ∈ X.

Proof. Let x ∈ X be any point, and choose an open affine neighborhood U = SpecB of x for which
A|U ∼= M̃ for some B-module M . If x corresponds to a prime ideal p ⊂ B, then Ax =Mp. Next, choose a
maximal ideal q containing p so that the localization map Bq → (Bq)pRq

∼= Bp (cf. Proposition A.1)makes
Bp into a Bq-algebra. If y is the closed point of X that corresponds to q, then condition (1.ii) tells us
that Ay =Mq is an Azumaya algebra over OX,y = Bq. However, since

Mp
∼= Bp ⊗B M ∼= (Bp ⊗Bq

Bq)⊗B M ∼= Bp ⊗Bq
(Bq ⊗B M) ∼= Bp ⊗Bq

Mq

then Mp = Ax is Azumaya over Bp = OX,x by Proposition 1.1.(c).

(1.2.2) Any Azumaya algebra A over a scheme X is a locally free OX -module. This follows immediately from
Proposition A.16.(ii).

(1.2.3) Given any Azumaya algebra A over X, we get a canonical OX -algebra homomorphism

Ψ : A⊗OX
Aop −→ EndOX

(A) (1.6)

in the following manner:

For every open subset U ⊆ X, we can define the map

ψU : A(U)⊗OX(U) A(U)op −→ EndOX|U
(A|U )

as follows: given an elementary tensor s⊗ s′ ∈ A(U)⊗A(U)op, we define the morphism of OX -algebras

ψU (s⊗ s′) : A|U −→ A|U with ψU (s⊗ s′)(V ) : A|U (V ) → A|U (V ) defined as x 7→ s|V · x · s′|V

where V ⊆ U and then we extend the definition of ψU to every element of A(U) ⊗OX(U) A(U)op by
linearity. It is straightforward to check that ψU (s ⊗ s′) is indeed a morphism of OX -algebras and that
the maps ψU define a presheaf homomorphism between the presheaf G : U 7→ A(U) ⊗OX(U) A(U)op and
the sheaf EndOX

(A). By passing to the sheafification of G, we obtain the map in (1.6); it is then also
straightforward to check that this map is an OX -algebra homomorphism.

(1.2.4) The canonical OX -algebra homomorphism in (1.6) induces the map (1.1) at the level of stalks. More
precisely: for every x ∈ X, the map in (1.6) induces the map on stalks:

Ψx : (A⊗OX
Aop)x −→

(
EndOX

(A)
)
x

However, we have natural isomorphisms

(A⊗OX
Aop)x ∼= Ax ⊗OX,x

Aop
x and

(
EndOX

(A)
)
x
∼= EndOX,x

(Ax)

by Proposition A.12, and hence we get the an OX,x-algebra homomorphism

Ψx : Ax ⊗OX,x
Aop
x −→ EndOX,x

(Ax) defined by [s]⊗ [s′] 7→ ([y] 7→ [s][y][s′])

where the formula follows from the definition of Ψ from above.

The definition of Azumaya algebra can be characterized in several ways. It is useful to relate the definition
of Azumaya algebra over a scheme to the theory of Azumaya algebras over local rings and to the classical theory
of central simple algebras over fields. Below, we show two other equivalent definitions of Azumaya algebras over
a scheme that reflect these two theories respectively.

Theorem 1.3. Let X be a scheme and let A be a coherent OX-module. The following are equivalent:

1. A is an Azumaya algebra over X,

2. A is a locally free OX-module and Ax ⊗ κ(x) is a central simple algebra over the residue field κ(x) of x,
for any point x in X.

3. A is a locally free OX-module and the canonical homomorphism

A⊗OX
Aop −→ EndOX

(A)

is an isomorphism.
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Proof. We will prove separately that (1) ⇐⇒ (2) and (1) ⇐⇒ (3).

(1)=⇒(2) By Remark (1.2.2) we have that A is a locally free OX -module. By assumption, for any point x in X, we
have that Ax is an Azumaya algebra over OX,x, so Proposition 1.1.(b) implies that

Ax ⊗ κ(x) = Ax ⊗OX,x
(OX,x/mX,x)

is an Azumaya algebra over κ(x), which is a field, and hence it is a central simple algebra over κ(x) by
Proposition 1.1.(a).

(2)=⇒(1) Let x ∈ X be a closed point. By Proposition 1.1.(a), our assumption on Ax⊗κ(x) implies that Ax⊗κ(x)
is an Azumaya algebra over κ(x). Next, we want to apply Proposition 1.1.(c) to Ax ⊗ κ(x) to conclude
that Ax is Azumaya over OX,x. We can do this because A is locally free by assumption, so that Ax is a
free OX,x-module by Proposition A.16.(ii) and has finite rank since A is coherent by definition. Thus we
may apply Proposition 1.1.(c) and we conclude that A is Azumaya over X.

(1) ⇐⇒ (3) By Remark (1.2.2) we have that A is a locally free OX -module. So by definition, we have that Ax is an
Azumaya algebra over OX,x for every x ∈ X if and only if the map

Ax ⊗OX,x
Aop
x −→ EndOX,x

(Ax) defined by [s]⊗ [s′] 7→ ([y] 7→ [s][y][s′])

is an isomorphism. However, Remark (1.2.4) tells us that this map is the one induced on stalks from the
canonical map

Ψ : A⊗OX
Aop −→ EndOX

(A)

from (1.6). Since scheme homomorphisms are isomorphisms if and only if they are isomorphisms at the
level of sheaves, the required equivalence follows.

Example 1.4. Let X be a neotherian affine scheme with X = SpecR and let A be an Azumaya algebra over
X. Since A is coherent and locally free, then A(X) = Ã for some free R-module A. Since A is Azumaya over
X, then A ⊗ Aop ∼= End(A) hence, taking global sections, we have A ⊗R Aop ∼= EndR(A). Thus an Azumaya

algebra A over the affine scheme SpecR is equivalent to an Azumaya algebra A over R where A = Ã.

1.3 The Brauer Group of a Scheme

We define the notion Brauer equivalence of Azumaya algebras over a scheme X in a similar way to how it is
done for central simple algebras.

Definition 2. Let A and A′ be two Azumaya algebras over a scheme X. We say that A is Brauer equivalent
to A′, denoted by A ∼ A′, if there exist locally free OX -modules E and E′ over X such that

A⊗OX
EndOX

(E) ∼= A′ ⊗OX
EndOX

(E′)

Remark 1.5. Of course, Brauer equivalence is an equivalence relation. Reflexivity is shown taking E = E′ =
OX which is clearly a locally free OX -module; symmetry follows from the fact that the definition of Brauer
equivalence is inherently symmetric. For transitivity, suppose A ∼ A′ and A′ ∼ A′′ via

A⊗OX
EndOX

(E) ∼= A′ ⊗OX
EndOX

(E′) and A′ ⊗OX
EndOX

(E′′) ∼= A′′ ⊗OX
EndOX

(E′′′)

respectively. Now, since each E(i) is locally free of finite rank, Proposition A.16 tells us that each stalk E
(i)
x , for

x ∈ X, is a free OX,x-module of finite rank. Thus Proposition A.12 applies to get

EndOX,x
(E(i)
x ⊗OX,x

E(j)
x ) ∼= EndOX,x

(E(i)
x )⊗OX,x

EndOX,x
(E(j)
x )

at the level of stalks. Hence∗

EndOX
(E(i))⊗OX

EndOX
(E(j)) ∼= EndOX

(E(i) ⊗OX
E(j)). (1.7)

∗Error: having isomorphic stalks does not mean that two sheaves are isomorphic; one must construct the sheaf morphism and
then verify that this morphism is an isomorphism on the stalks.
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Notice that E
(i)
x ⊗OX,x

E
(j)
x is a free OX,x-module for every x ∈ X and hence E(i) ⊗OX

E(j) is a locally free
OX -module so it is a valid choice for showing Brauer equivalence between A ∼ A′′ and in general between any
two Azumaya algebras over X. Finally, we have

A⊗ End(E⊗ E′′) ∼= A⊗
(
End(E)⊗ End(E′′)

)
∼=
(
A⊗ (End(E)

)
⊗ End(E′′)

∼=
(
A′ ⊗ End(E′)

)
⊗ End(E′′)

∼=
(
A′ ⊗ End(E′′)

)
⊗ End(E′)

∼=
(
A′′ ⊗ End(E′′′)

)
⊗ End(E′)

∼= A′′ ⊗ End(E′′′ ⊗ E′),

and thus A ∼ A′′.

Definition 3. Let X be a scheme. Then the set of equivalence classes of Azumaya algebras over X is denoted
by Br(X). Given two elements [A], [A′] ∈ Br(X), we define

[A] · [A′] = [A⊗OX
A′]. (1.8)

Remark 1.6. The operation · defined above is well-defined. Indeed, if A and A′ are Azumaya algebras, then
for every x ∈ X, we have

(A⊗OX
A′)x ⊗OX,x

κ(x) ∼= (Ax ⊗OX,x
A′
x)⊗OX,x

κ(x), by Proposition A.12.(i),

∼=
(
Ax ⊗OX,x

κ(x)
)
⊗OX,x

(
A′
x ⊗OX,x

κ(x)
)
.

In other words, (A⊗OX
A′)x⊗OX,x

κ(x) is a tensor product of central simple algebras over κ(x). It is well known
that these are again central simple algebras over κ(x) (see for example [Kna07, Proposition 2.36 of Chapter
II, §7]) and thus by Theorem 1.3 we have that A⊗A′ is again an Azumaya algebra over X. This means that
[A⊗A′] is an element of Br(X).

Next, to finish proving that the operation is well-defined, we must show that if A ∼ B and A′ ∼ B′, then
A⊗A′ ∼ B⊗B′. Indeed, if

A⊗ End(E) ∼= B⊗ End(E′) and A′ ⊗ End(E′′) ∼= B′ ⊗ End(E′′′)

then we have

(A⊗A′)⊗
(
End(E⊗ E′′)

) ∼= (A⊗A′)⊗
(
End(E)⊗ End(E′′)

)
by (1.7)

∼=
(
A⊗ End(E)

)
⊗
(
A′ ⊗ End(E′′)

)
∼=
(
B⊗ End(E′)

)
⊗
(
B′ ⊗ End(E′′′)

)
since A ∼ B, A′ ∼ B′

∼= (B⊗B′)⊗
(
End(E′)⊗ End(E′′′)

)
∼= (B⊗B′)⊗

(
End(E′ ⊗ E′′′)

)
by (1.7),

∴ A⊗A′ ∼ B⊗B′

We conclude that the operation defined in (1.8) is well-defined.

Proposition 1.7. The set Br(X) with the operation defined in (1.8) is an abelian group with identity element
[OX ] and inverses [A]−1 = [Aop].

Proof. The operation is associative and commutative because the tensor product is associative and commutative
(up to unique isomorphism). The trivial OX -module OX is the identity because F⊗OX

∼= F for any OX -module
F. Finally, by Theorem 1.3 we have that

[A] · [Aop] = [A⊗OX
Aop] = [EndOX

(A)]. (1.9)

However, since
OX ⊗ End(A) ∼= End(A)⊗OX

∼= End(A)⊗ End(OX)

and A is locally free, we may take E = A and E′ = OX to conclude that OX ∼ End(A) and thus (1.9) reduces
to [A] · [Aop] = [OX ] as required.

Proposition 1.8. The Brauer group defines a contravariant functor from the category of noetherian schemes
to the category of abelian groups as follows:

X 7→ Br(X) and
(
Y

f−→ X
)
7→

(
Br(X)

Br(f)−→ Br(Y )

[A] 7→ [f∗A]

)
where f∗A is the inverse image of A.
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Proof. First we show that Br(f) is well-defined. We show that f∗A is an Azumaya algebra over Y so [f∗A]
makes sense and then we show that Br(f) is independent of the choice of representative.

Suppose that A is an Azumaya algebra over X. Since A is coherent, then f∗A is coherent because both X
and Y are noetherian (see Proposition 5.8 of Chapter II of [Har77]). Furthermore, by Corollary A.13 we have
that for any y ∈ Y :

(f∗A)y ∼= Af(y) ⊗OX,f(y)
OY,y.

Notice that Af(y) is Azumaya over OX,f(y) by assumption. So Proposition 1.1.(b) implies that (f∗A)y is
Azumaya over OY,y and thus f∗A is Azumaya over Y . Observe that this argument, together with Proposition
A.16.(i), proves:

E is a locally free OX -module =⇒ f∗E is a locally free OY -module.

Next, suppose that A ∼ A′ as Azumaya algebras over X. Then there exist locally free OX -modules E and
E′ such that

A⊗OX
EndOX

(E) ∼= A′ ⊗OX
EndOX

(E′).

Now, both the tensor product and the Hom functor commute with the pullback functor of a sheaf (cf. Corollary
A.15), so

f∗
(
A⊗OX

HomOX
(E,E)

) ∼= f∗A⊗OY
f∗HomOX

(E,E) ∼= f∗A⊗OY
HomOY

(f∗E, f∗E)

and analogously for A′ and E′. Putting these isomorphisms together yields

f∗A⊗OY
EndOY

(f∗E) ∼= f∗
(
A⊗OX

EndOX
(E)
) ∼= f∗

(
A′ ⊗OX

EndOX
(E′)

) ∼= f∗A′ ⊗OY
EndOY

(f∗E′)

and hence f∗A ∼ f∗A′ as required.
Finally, since f∗ is a contravariant functor from the category of OX -modules to the category of OY -modules,

then Br(−) is functorial. Indeed:

Br(idX)([A]) = [id∗XA] = [idXA] = [A] =⇒ Br(idX) = idBr(X)

Br(f ◦ g)([A]) = [(f ◦ g)∗A] = [g∗f∗A] = Br(g)([f∗A]) = Br(g)Br(f)([A]) =⇒ Br(f ◦ g) = Br(g)Br(f).
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Chapter 2

The Brauer Group of an Affine Scheme

In this chapter, we will describe the Brauer group of X as a subgroup of the Brauer group of its field of fractions.
Throughout this chapter, we fix the following notation, though we will regularly add more requirements when
needed.

• R is an integral domain.

• K is the fraction field of R and we view R as a subring of K.

• X = SpecR and Y = SpecK. The inclusion R ↪→ K gives us a morphism ι : Y → X.

It is well known that the category of coherent OX -modules is equivalent to the category of finitely generated
R = OX(X)-modules via M 7→ M̃ with inverse F 7→ Γ(X,F), the “global sections” functor (see for example

Corollary 5.5 in Chapter II of [Har77]). Thus, if A is an Azumaya algebra over X, then A ∼= Ã for some
Azumaya algebra A over R. Furthermore, under the functor Br(−) we have

Br(ι) : Br(X) −→ Br(Y ) with [A] = [Ã] 7→ [ι∗Ã] = [Ã⊗R K]

and thus we obtain the classical group homomorphism

Br(R) −→ Br(K) defined by [A] 7→ [A⊗R K].

It is worth remarking what Brauer equivalence looks like the affine case. More specifically, the proof of Proposi-
tion 1.7, tells us that [A] is the trivial class in Br(X) if and only if A ∼= End(E) for some locally free OX -module
E on X. Thus, if we are able to find a finitely generated R-module M which is also locally free, i.e. Mp is
a free Rp-module for every prime ideal p ⊂ R, for which A ∼= EndR(M) as R-algebras, then we would have

that A ∼= End(M̃). This follows from the fact that the functor M 7→ M̃ is fully faithful and hence then

EndR(M) ∼= EndOX
(M̃).

In conclusion, we have that if A = Ã, then

[A] = 0 ∈ Br(R) ⇐⇒ A ∼= EndR(M) for some finitely generated R-module that is locally free. (2.1)

We now restrict our attention to this setting.
The main goal of this section is to prove the following theorem only for rings of dimension 1.

Theorem 2.1. Let R be a noetherian integral domain that is integrally closed in its fraction field. Then the
map Br(R) → Br(K) is injective.

The proof will require a close look at the properties of Azumayas algebras A as R-subalgebras of A⊗R K.
More precisely, Azumaya algebras are maximal R-orders in A⊗R K and this maximality is what will allow us
to compute the triviality of the Brauer class [A] by embedding A into an endomorphism ring.

We will require the study of lattices and orders inside R-algebras that need not be commutative. This
nonabelian case slightly complicates the classical computations of orders in commutative algebras such as
number fields. After setting up the necessary theory of orders, we will be in a position to prove Theorem 2.1.

2.1 Lattices

In addition to the notation established at the beginning of the chapter, let V be a finite dimensional K-vector
space. In particular, V is an R-module via restriction of scalars.
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Definition 4. Let Λ be an R-submodule of V . We say that Λ is an R-lattice if it satisfies

(i) Λ contains a K-basis of V ,

(ii) There exists a finitely generated R-submodule Λ′ of V such that Λ ⊆ Λ′.

Remark 2.2. Condition (ii) allows for an R-lattice Λ to not be finitely generated as an R-module. Though
most of the lattices we will study will in fact be finitely generated themselves.

Examples 2.3. (of R-lattices)

1. Let Λ be a free R-module of rank equal to dimK(V ). We can embed Λ into V by mapping a free generating
set of Λ onto a basis. It is clear that the image of Λ is an R-lattice.

2. Let M be a finitely generated torsion-free R-module, then M is an R-lattice in K ⊗RM .

Proof. Since M is torsion-free, by definition, the localization map M → S−1M ∼= K ⊗R M , where
S = R \ {0}, is injective. So we identify m ∈M with 1⊗m ∈ K ⊗RM . Now, if m1, . . . ,mn generate M
over R, then 1 ⊗m1, . . . , 1 ⊗mn generate K ⊗R M over K. Indeed, if x ⊗m ∈ K ⊗R M is any simple
tensor, there exist r1, . . . , rn ∈ R such that m = r1m1 + · · ·+ rnmn and hence

x⊗m = x⊗
(∑

rimi

)
=
∑

x⊗ (rimi)
∑

(xri)(1⊗mi).

Since M contains {1 ⊗m1, . . . , 1 ⊗mn}, which in turn contains a K-basis of K ⊗R M , then M satisfies
property (i). Since M is itself finitely generated, it immediately satisfies property (ii).

3. If Λ is an R-lattice in V , then EndR(Λ) is an R-lattice in EndK(V ). See Proposition 2.6 below.

4. (from Number Theory) Let R be an integrally closed noetherian domain and L/K a finite separable
extension. Then the integral closure S of R in L is an R-lattice in L.

Since lattices need not be finitely generated R-modules, it is useful to characterize them in terms of nicer
R-modules.

Proposition 2.4. Let Λ be an R-submodule of V . Then, the following are equivalent:

(i) Λ is an R-lattice of V .

(ii) There exist free R-submodules F1 and F2 of V such that

F1 ⊆ Λ ⊆ F2 and rk(F1) = rk(F2) = dimK V

Proof.

(i) =⇒ (ii) Let {v1, . . . , vn} ⊂ Λ be a K-basis of V . Then

F1 :=

n⊕
i=1

Rvi ⊆ Λ

since Λ is an R-submodule of K. Clearly, F1 is free of rank n = dimK V . Next, we construct F2.

Since Λ is contained in some finitely generated R-submodule N of V there are elements x1, . . . , xm ∈
N ⊂ V that generate N over R. Since each xj ∈ V , we may express it as a K-linear combination of the
above basis. More precisely, since K is the fraction field of R, then for every j = 1, . . . ,m we may write

xj =

n∑
i=1

rij
sij
vi with rij ∈ R, sij ∈ R \ {0}.

So if we multiply all the denominators, say s =
∏
ij sij ∈ R \ {0}, and define

F2 := s−1F1 =

v⊕
i=1

R(s−1vi)

then by construction xi ∈ F2 for all i so that N ⊆ F2 and hence Λ ⊆ F2 as required.
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(ii) =⇒ (i) Suppose that Λ is between two free R-submodules of V , both of rank n = dimK(V ). The second property
of being an R-lattice is automatic by taking Λ′ = F2. Now, since F1 is free, then

KF1 = K ⊗R F1
∼= K ⊗R Rn ∼= (K ⊗R R)n ∼= Kn.

So KF1 is an n-dimensional vector space so it contains a K-basis, say {x1, . . . , xn}. Then, each xi may be
written as xi = kifi with ki ∈ K and fi ∈ F1. Notice that ki ̸= 0 since otherwise {x1, . . . , xn} wouldn’t
be linearly independent. In particular, the set {k−1

1 x1, . . . , k
−1
n xn} ⊂ F1 ⊂ Λ is linearly independent in V

and hence a K-basis. This shows that Λ is an R-lattice.

Next, we study an important class of lattices called reflexive lattices. These are modules that are isomorphic
to their double dual module. This property is key in proving that Br(R) embeds into Br(K). First,

Definition 5. Let V and V ′ be vector spaces over K. Let Λ and Λ′ be R-lattices in V and V ′ respectively.
The lattice quotient of Λ and Λ′ is the R-module:

(Λ′ : Λ) = {f ∈ HomK(V, V ′) | f(Λ) ⊆ Λ′}.

Remarks 2.5. (about lattice quotients)

1. The lattice quotient satisfies the following inclusion property:

Λ1 ⊆ Λ2 and Λ′
1 ⊆ Λ′

2 =⇒ (Λ′
1 : Λ2) ⊆ (Λ′

2 : Λ1).

In fact, this explains the “ratio” notation since the classical ratio x : y of two numbers becomes larger if
x (resp. y) is replaced by a larger (resp. smaller) number.

Proof. If f ∈ (Λ′
1 : Λ2), then f(Λ1) ⊆ f(Λ2) ⊆ Λ′

1 ⊆ Λ′
2.

2. The restriction map is an R-module isomorphism:

(Λ′ : Λ)
∼−→ HomR(Λ,Λ

′) defined by f 7→ f |Λ.

Hence we will identify (Λ′ : Λ) with HomR(Λ,Λ
′).

Proof. Notice that if f ∈ (Λ′ : Λ), then by definition, the image of f |Λ lies in Λ′. Furthermore, since f is
K-linear, it is R linear and hence f |L ∈ HomR(Λ,Λ

′). It is clearly an R-module homomorphism. Next, if
f |Λ = 0, then f |Λ is zero on the K-basis contained in Λ and hence f = 0 as an element of HomK(V, V ′);
this shows that the restriction map is injective. Finally, if f ∈ HomR(Λ,Λ

′), then tensoring with K yields

idK ⊗ f : K ⊗R Λ −→ K ⊗R Λ′.

Since Λ is an R-submodule of V , a K-vector space, it is torsion free and hence embeds into K ⊗R Λ. By
the functoriality of tensoring with K, we have the commutative diagram:

Λ K ⊗R Λ

Λ′ K ⊗R Λ′

f idK⊗f

Since the canonical homomorphism Λ ↪→ K⊗RΛ is just multiplication by K, we have K⊗RΛ = KΛ = V
so we may view idK ⊗ f ∈ HomK(V, V ′). On the other hand (idK ⊗ f)|Λ is just the composition of the
top arrow with the right arrow, so by commutativity of the diagram (idK ⊗ f)|Λ = f and we conclude
that the restriction map is is surjective.

3. Let S be a multiplicative subset of R. Since K is the fraction field of R, we view the localization S−1R
as a subring of K. Then

S−1(Λ′ : Λ) = (S−1Λ′ : S−1Λ)

11



Proof. Let f/s ∈ S−1(Λ′ : Λ). Then for every λ/t ∈ S−1Λ we have

(f/s)(λ/t) =
1

s
f(λ/t) =

1

st
f(λ) ∈ S−1Λ′

since f(λ) ∈ Λ′. This shows that f/s ∈ (S−1Λ′ : S−1Λ) Conversely, let f ∈ (S−1Λ′ : S−1Λ), then for a
generating set {λ1, . . . , λn} of some finitely generated R-submodule M of V containing Λ, we have that
f(λi/1) ∈ S−1(Λ′) for every i = 1, . . . , n, so there exists λ′i ∈ Λ′ and si ∈ S such that f(λ1/1) = λ′i/s

′
i. If

we define s = s1 · · · sn, then (sf)(λi) ∈ RΛ′ = Λ′ and hence sf ∈ (Λ′ : Λ) so that f = sf/s ∈ S−1(Λ′ :
Λ).

The reason (Λ′ : Λ) is called the quotient lattice is because it is one.

Proposition 2.6. Let V and V ′ be vector spaces over K. Let Λ and Λ′ be R-lattices in V and V ′ respectively.
Then

(Λ′ : Λ) = HomR(Λ,Λ
′) is an R-lattice in HomK(V, V ′).

Proof. First we prove the case when Λ and Λ′ are free R-lattices and then use Proposition 2.4 to finish the proof.
Under this strong assumption we have that (Λ′ : Λ) = HomR(Λ,Λ

′) is a free R-module and hence flat, which
means that tensoring the inclusion R ↪→ K with HomR(Λ,Λ

′) preserves injectivity. Thus, after an application
of Proposition A.7, we obtain the embedding

HomR(Λ,Λ
′) ∼= R⊗R HomR(Λ,Λ

′) ↪→ K ⊗R HomR(Λ,Λ
′) ∼= HomK(K ⊗R Λ,K ⊗R Λ′) ∼= HomK(V, V ).

Since HomR(Λ,Λ
′) is free of rank

rk(Λ)× rk(Λ′) = dimK(V ) dimK(V ′) = dimK(HomK(V, V ′)).

By taking F1 = F2 = HomR(Λ,Λ
′) in Proposition 2.4, HomR(Λ,Λ

′) is an R-lattice.
Next, we relax the freeness assumption on Λ and Λ′. By Proposition 2.4, there are free R-submodules

F1, F2 ⊆ V and F ′
1, F

′
2 ⊆ V ′ such that

F1 ⊆ Λ ⊆ F2 and rk(F1) = rk(F2) = dimK V,

F ′
1 ⊆ Λ′ ⊆ F ′

2 and rk(F ′
1) = rk(F ′

2) = dimK V
′.

Thus by the inclusion properties of the quotient lattice (see Remark 2.5.1) we have

(F ′
1 : F2) ⊆ (Λ′ : Λ) ⊆ (F ′

2 : F1).

By the previous part, we saw that (F ′
1 : F2) and (F ′

2 : F1) are both free R-lattices of rank dimK(HomK(V, V ′)),
then we can use Proposition 2.4 again to conclude that (Λ′ : Λ) is an R-lattice.

Example 2.7. (Dual lattice) If we set V ′ = K and Λ′ = R, then

(R : Λ) = HomR(Λ, R) = Λ∗

So the dual module of Λ is a quotient lattice. In particular,

Λ∗ is an R-lattice in the vector space dual V ∗.

Example 2.8. (Double-Dual lattice) If we set V ′ = V ∗ and Λ′ = Λ∗, which we can do by the previous example,
then

(R : Λ∗) = (R : HomR(Λ, R)) = HomR(HomR(Λ, R), R) = Λ∗∗

So the double dual module of Λ is a quotient lattice and

Λ∗∗ is an R-lattice in the vector space double dual V ∗∗.

Next we study reflexive lattices. These are those that are isomorphic to their double dual module. Analo-
gously as in the case of vector spaces, we have the R-module homomorphism:

Λ ↪→ Λ∗∗ defined by λ 7→ (f 7→ f(λ))

By the functoriality of the hom functor, we obtain the commutative diagram

Λ Λ∗∗

V V ∗∗∼

where the vertical arrows are the inclusions of lattices into their ambient vector spaces and the bottom arrow
is the canonical isomorphism. By commutativity, the top arrow is injective.
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Definition 6. Let Λ be an R-lattice in V . Then Λ is reflexive if the canonical embedding Λ ↪→ Λ∗∗ is an
isomorphism.

The main reason we are interested in reflexive lattices is that in some cases, reflexive lattices are projective
and hence give us candidates for showing that Azumaya algebras have trivial Brauer class. More precisely we
have a theorem due to Auslander and Goldman:

Theorem 2.9. Let R a neotherian regular domain with fraction field K. Let Λ an R-lattice in some K-vector
space V . Then

Λ is reflexive and EndR(Λ) is a projective R-module =⇒ Λ is a projective R-module.

While the proof of this theorem lies outside of the scope of these notes, we can prove a weaker version that
replaces the condition on EndR(Λ) with a restriction on the dimension of R.

Theorem 2.10. Let R be a regular noetherian domain of Krull dimension dimR ≤ 1. Let Λ be an R-lattice in
V that is also finitely generated as an R-module. Then

Λ is reflexive =⇒ Λ is projective.

Proof. We separate the proof into three cases, one for each possible dimension.

(dimR = 0) Dimension zero rings are fields. Thus, Λ is automatically free and hence projective.

(dimR = 1) By the characterization of finitely generated projective modules, cf. Proposition A.9, we must show that
Λ is finitely presented and that Λm is a free Rm-module for every maximal ideal m of R. The former
property follows immediately from our assumptions that R is noetherian and Λ is finitely generated (see
Remark A.10).

To show that Λm is free, we will apply the structure theorem of finitely generated modules over a
PID. To do this we must verify that Λm is finitely generated, torsion-free and that Rm is a PID. The
first two properties are easy to verify. Since Λ is finitely generated as an R-module, then Λm is finitely
generated as an Rm-module; just tensor the exact sequence Rn ↠ Λ → 0 with the flat R-module Rm to
get an epimorphism Rnm ↠ Λm. Next, since Λ is torsion-free as an R-module (it is contained in a K-vector
space), then Λm is torsion-free as an Rm-module as it is also contained in the same K-vector space as Λ.
Thus, if Rm is a PID, then we may apply the structure theorem of finitely generated torsion-free modules
over a PID and conclude that Λm is a free Rm-module as required.

The last step in this proof is to show that Rm is a PID. Since R is a regular noetherian domain, then
Rm is a regular noetherian local ring by definition. Now, dimRm = htm ≤ dimR = 1 by definition. Since
m is maximal and R is a not a field, then htm = 1. Thus Rm is a regular local domain of dimension 1.
This is equivalent to being a PID by Proposition A.3. This completes the proof.

2.2 Orders

Definition 7. Let A be a K-algebra that is finite dimensional as a K-vector space. Then O ⊆ A is called an
R-order if it satisfies

(i) O is an R-subalgebra of A,

(ii) O is an R-lattice of A.

Theorem 2.11. Let R be a noetherian integrally closed domain and K its field of fractions. Let A be a central
simple algebra over K. Let O ⊂ A be an R-subalgebra of A such that KO = A. Then

O is an R-order of A ⇐⇒ O/R is an integral extension.

Proof. We prove a double implication:

(=⇒) Let α ∈ O. We want to show that α is integral over R. By definition of lattice, there is a finitely generated
R-submodule O′ of A such that O ⊆ O′; in particular, R[α] ⊆ O′. This means that the multiplication
map x 7→ αx is an R-linear endomorphism ψ of O′ and hence by Cayley-Hamilton must satisfy a monic
equation:

ψn + rn−1ψ
n−1 + · · ·+ r1ψ + r0 (ri ∈ R).

Applying both sides of this equation to 1 ∈ O yields an integral dependence equation for α.
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(⇐=) Since O is already an R-subalgebra of A by assumption (and hence an R-submodule), we must show that
O is an R-lattice of A. We prove each property separately:

(i) Let {a1, . . . , an} ⊂ A be a K-basis of A. Since KO = A by assumption, then there exist µ1, . . . , µn ∈
K and λ1, . . . , λn ∈ O such that ai = µiλi. It is clear that each µi ̸= 0 so that {λ1, . . . , λn} is also a
K-basis of A and it is contained in O.

(ii) See Lemma 11.3.2 of [For17].

Finally, we finish the section by putting everything together and applying the theory of R-orders to Azumaya
algebras over R.

Theorem 2.12. Let R be an integrally closed domain and let A an Azumaya algebra over R. Then A is a
maximal R-order in A⊗R K.

Proof. For simplicity, we write B := A ⊗R K, which is an R-algebra. Since A is an Azumaya algebra, it
is a finitely generated flat R-module. Thus tensoring with A over R embeds A into B as an R-lattice by
Example 2.3.2. Since A is itself an R-algebra, then A is an R-order in B; as in Example 2.3.2 we also make the
identification B = AK and view A as a subalgebra of B. We recall the fact that B is a central simple algebra
over K by virtue of A being an Azumaya algebra over R (see Proposition 1.1.(a)) and hence Z(B) = K.

Next, let O ⊆ B be an R-order that contains A and consider the centralizer of A in O, i.e.

Z := ZO(A) = {z ∈ O | za = az, ∀a ∈ A} ⊆ O.

Notice that Z is an R-subalgebra of O. If b = ak ∈ B = AK is an arbitrary element, with a ∈ A and k ∈ K,
then if z ∈ Z we have

zb = z(ak) = (za)k
∗
= k(za) = k(az) = (ka)z

∗
= (ak)z = bz,

where the equalities marked by ∗ follow from the fact that Z(B) = K. We have shown that every element of Z
commutes with every element of B, i.e. Z ⊆ K and thus

Z ⊆ K ∩ O.

However, Theorem 2.11 tells us that every element of O, and hence of Z, is integral over R. By assumption, R
is integrally closed in K, so that Z ⊆ R and thus Z = R.

Finally, in the proof of the double centralizer theorem for central simple algebras, it is shown that the
multiplication map

A⊗R Z −→ O defined by a⊗ z 7→ az

is a natural R-algebra isomorphism (see for example §8 of [Kna07]). We may thus identify O with AZ so that
O = AZ = AR = A. This proves that A is a maximal R-order in B as required.

2.3 The Brauer Group of a Regular Ring

The main goal of this section is to prove the following theorem:

Theorem 2.13. Let R be a neotherian regular domain of dimension 1 with fraction field K. Then the map
Br(R) → Br(K) is injective.

Proof. Let A be an Azumaya algebra over R such that its image [A ⊗R K] is trivial in Br(K), that is B :=
A ⊗R K ∼= Mn×n(K) as K-algebras for some n > 0. Furthermore, Theorem 2.12 states that A is a maximal
R-order in B.

Now, let V be an n-dimensional K-vector space (e.g. V = Kn) so we may identify B with the K-algebra
EndK(V ) which makes V into a B-module via φ · v := φ(v). Next we fix a nonzero vector v ∈ V \ {0}. The
evaluation map

ϵ : B −→ V defined by φ 7→ φ(v),

is clearly surjective since given any nonzero vector w of V , a change of basis matrix sending v to w is an
endomorphism that maps onto w. Furthermore, it is a B-module homomorphism since for any φ1, φ2 ∈ B we
have

ϵ(φ1 ◦ φ2) = (φ1 ◦ φ2)(v) = φ1(φ2(v)) = φ1(ϵ(φ2)) = φ1 · ϵ(φ2).
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Next we restrict ϵ to A ⊂ B and corestrict to its image. More precisely, define Λ := ϵ(A) to be the image of
A under ϵ and

ε : A −→ Λ defined as ε := ϵ|A
The reason why we use Λ to denote ϵ(A) is that Λ is an R-lattice in V . To prove that this is indeed the case,
we must show three things:

• (Λ is an R-submodule of V ) If w1, w2 ∈ Λ, then there is an φ1, φ2 ∈ A such that φi(v) = wi and since A
is an R-subalgebra of the R-module endomorphisms of V , for any r ∈ R we have

rw1 + w2 = rφ1(v) + φ2(v) = (rφ1 + φ2)(v) where rφ1 + φ2 ∈ A

and thus rw1 + w2 ∈ Λ; Λ is an R submodule of V .

• (Λ contains a K-basis of V ) Since ϵ is an epimorphism, dimK ker ϵ = dimK B/ dimK V = n and B/ ker ϵ
is an n-dimensional K vector space; let {ψ1 + ker ϵ, . . . , ψn + ker ϵ} be a basis. Since B = KA, we have
ψi = µiφi, where µi ∈ K× and φi ∈ A. Notice that

ε(φi) = ϵ(φi) = ϵ(µ−1
i ψi) = µ−1

i ψi(v),

So that any K-linear combination k1ε(φ1) + · · ·+ knε(φn) = 0, induces a K-linear combination

k1φ1(v) + · · ·+ knφn(v) = 0 =⇒ k1φ1 + · · ·+ knφn ∈ ker ϵ

=⇒ k1µ
−1
1 (ψ1 + ker ϵ) + · · ·+ knµ

−1
n (ψn + ker ϵ) = 0

and hence k1 = · · · = kn = 0. This shows that {ε(φ1), . . . , ε(φn)} ⊂ Λ is K-linearly independent in V and
thus a K-basis.

• (Λ is contained in a finitely generated R-submodule Λ′ of V ) Since ε is a surjective R-module homomor-
phism and A is a finitely generated R-module, then Λ itself is finitely generated as an R-module.

Next, we embed A into EndR(Λ) via the left regular representation. More precisely, consider the map

ρ : A −→ EndR(Λ) defined by ρ(φ)(λ) = φ(λ), λ ∈ Λ.

This is well defined because if φ ∈ A and λ ∈ Λ, then there exists φ′ ∈ A such that ε(φ′) = φ′(v) = λ and hence

ρ(φ)(λ) = φ(λ) = φ(φ′(v)) = (φ ◦ φ′)(v) = ε(φ ◦ φ′) ∈ Λ.

It is routine to check that ρ is an R-algebra homomorphism; below we just verify that it is multiplicative: if
φ,φ′ ∈ A and r ∈ R, then for every λ ∈ Λ,

ρ(φ ◦ φ′)(λ) = (φ ◦ φ′)(λ) = φ(φ′(λ)) = φ(ρ(φ)(λ)) = ρ(φ)(ρ(φ′)(λ)) =
(
ρ(φ) ◦ ρ(φ′)

)
(λ).

Finally, ρ is injective: if φ ∈ ker ρ, then ρ(φ)(λ) = φ(λ) = 0 for all λ ∈ Λ and in particular φ vanishes on
the basis of V that is contained in Λ and hence φ = 0. This means that we can identify A as a subalgebra of
EndR(Λ).

By Proposition 2.6 EndR(Λ) is an R-order of B, so the maximality of A as an R-order, given by Theorem
2.12 implies that A = EndR(Λ). In view of our characterization of [A] = 0 from (2.1), we would be close to
finishing the proof. However, we cannot guarantee that Λ is locally free. However, this problem can be solved
by changing Λ to Λ∗∗.

Lets write M := Λ∗∗. The map

α : Λ∗ ⊗R Λ −→ HomR(Λ,Λ)
∗ defined by α(f ⊗ λ)(g) = f(g(λ))

is an R-module homomorphism. It is a natural isomorphism whenever Λ is a finitely generated projective
R-module. Since we don’t have this assumption, we must look at the problem locally.

Every prime ideal p ⊂ R is of height 1 since dimR = 1, so the localization Rp is regular (since R is regular
by assumption) with dim(Rp) = ht(p) = 1. In dimension 1, being regular is equivalent to being a PID, so Rp is
a PID. This means that Λp := Rp ⊗R Λ is a finitely generated torsion-free (since Λ is contained in the K-vector
space V ) Rp-module. By the structure theorem for finitely generated modules over a PID, we may conclude
that Λp is free. With this in mind, we obtain the following canonical isomorphisms:

Rp ⊗R (Λ∗ ⊗R Λ) ∼= (Rp ⊗R Λ∗)⊗Rp
(Rp ⊗R Λ) base change,

= (Rp ⊗R HomR(Λ, R))⊗Rp
Λp

∼= HomRp
(Λp, Rp)⊗Rp

Λp by Proposition A.7,

∼= HomRp

(
HomRp

(Λp,Λp), Rp

)
by Proposition A.6,

∼= HomRp

(
Rp ⊗R HomR(Λ,Λ), Rp ⊗R R

)
by Proposition A.7,

∼= Rp ⊗R HomR

(
HomR(Λ,Λ), R

)
by Proposition A.7,

= Rp ⊗R HomR(Λ,Λ)
∗.
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Thus, the localized maps αp : Rp⊗R (Λ∗⊗Λ) → Rp⊗RHom(Λ,Λ)∗ are all isomorphisms and thus the dualized
maps

α∗
p : HomR(Λ,Λ)

∗∗ −→ (Λ∗ ⊗R Λ)∗

are all isomorphisms. Thus

HomR(Λ,Λ)
∗∗ ∼= (Λ∗ ⊗R Λ)∗

= HomR(Λ
∗ ⊗R Λ, R)

∼= HomR(Λ⊗R Λ∗, R)

∼= HomR

(
Λ∗,HomR(Λ, R)

)
tensor-hom adjunction

= HomR(Λ
∗,Λ∗)

Since HomR(Λ,Λ)
∗∗ is reflexive, we have

HomR(Λ,Λ)
∗∗ ∼=

(
HomR(Λ,Λ)

∗∗)∗∗ ∼= HomR(Λ
∗,Λ∗)∗∗ ∼= HomR(Λ

∗∗,Λ∗∗)

Furthermore
EndR(Λ) ↪→ EndR(Λ)

∗∗ = EndR(Λ
∗∗)

so we may view A as a subalgebra of EndR(Λ
∗∗). By maximality we have A = EndR(Λ

∗∗). Since Λ∗∗ is
reflexive, then Theorem 2.10 tells us that Λ∗∗ is projective and Proposition A.9 implies that Λ∗∗ is locally free.
Thus we can now safely conclude that [A] = 0 inside the Brauer group. This finishes the proof that the map
Br(R) → Br(K) is injective.
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Appendix A

Miscellaneous Results

A.1 Tools from Commutative Algebra

A.1.1 Commutative Rings

Proposition A.1. (Exercise 3 of Chapter III of [AM94]) Let R be a commutative ring and let S, T ⊂ R be
two multiplicatively closed sets. Let ℓS : R → S−1R denote the canonical localization map and set U := ℓ(T ) ⊂
S−1R. Then there is a canonical isomorphism

U−1(S−1R) ∼= (ST )−1R.

Proof. Note that since R is commutative, ST is multiplicatively closed and hence (ST )−1R makes sense. Also,
since ℓ is a ring homomorphism, U is multiplicatively closed and thus U−1(S−1R) also makes sense. By our
assumptions, we have the following diagram

R S−1R U−1(S−1A)

(ST )−1R

ℓS

ℓST

ℓU

The required isomorphism (and its inverse) will be set up with the universal property of the localization map.
Let st ∈ ST be an arbitrary element. Then

ℓU ℓS(st) = ℓU (ℓS(s)ℓT (s)) = ℓU (ℓS(s)) · ℓU (ℓS(t)).

Since s ∈ S, we have ℓS(s) ∈ (S−1R)×. Since unital ring homomorphisms preserve units we have that
ℓU (ℓS(s)) ∈ (U−1(S−1R))×. On the other hand, since t ∈ T , we have ℓS(t) ∈ ℓ(T ) = U and thus ℓU (ℓS(t)) is
a unit in U−1(S−1R). These two arguments show that ℓU ℓS(st) is a product of units and hence itself a unit.
By the universal property of localization, the map ℓU ℓS factors through ℓST , i.e. there exists a (unique) ring
homomorphism φ : (ST )−1 → U−1(S−1A) that makes the following diagram commute:

R S−1R U−1(S−1A)

(ST )−1R

ℓS

ℓST

ℓU

φ
ℓU ℓS = φℓST

Next, if s ∈ S then s = s · 1 ∈ ST (since 1 ∈ T ) so that ℓST (s) is a unit in (ST )−1R. By the universal
property of localization, there is a (unique) ring homomorphism ψ : S−1R→ (ST )−1R that makes the following
diagram commute:

R S−1R

(ST )−1R

ℓS

ℓST
ψ ℓST = ψℓS

Combining this with the previous commutative diagram, we have that

(ℓU )ℓS = φℓST = (φψ)ℓS .

17



In other words, both ℓU and φψ satisfy the same universal property, namely:

S−1R

R U−1(S−1R)

ℓU=φψ
ℓS

φℓST

Note that φℓST does indeed map S into the units of U−1(S−1R) as shown above. By the uniqueness of the
universal property, we have

ℓU = φψ. (A.1)

On the other hand, if u = ℓS(s) ∈ U is arbitrary, then by the commutativity of the above diagram we have

ψ(ℓS(s)) = ℓST (s) = ℓST (s · 1) ∈
(
(ST )−1R

)×
.

Thus ψ maps U into the units of (ST )−1R so the universal property of localizations there is a (unique) ring
homomorphism ξ : U−1(S−1A) → (ST )−1R that makes the following diagram commute:

S−1R U−1(S−1A)

(ST )−1R

ℓU

ψ
ξ

ψ = ξℓU

In fact, if we postcompose ψ = ξℓU with φ and use (A.1) we have:

(φξ)ℓU = φψ = ℓU = ℓU .

In other words, both φξ and id satisfy the same universal property, namely

U−1(S−1R)

S−1R U−1(S−1R)

φξ=id
ℓU

ℓU

and thus uniqueness implies that φξ = id.
Conversely, if we postcompose ℓU ℓS = φℓST with ξ we have

(ξφ)ℓST = ξℓU ℓS = ψℓS = ℓST . (A.2)

That is, ξφ and the identity satisfy the following universal property

(ST )−1R

R (ST )−1R

ξφ=id
ℓST

ℓST

∃!η such that ℓST = ηℓST

and thus id = ξφ. Since both ξ and φ were uniquely given the isomorphism U−1(S−1R) ∼= (ST )−1R is unique.
This finishes the proof.

Remark A.2. We explicitly write down what Proposition A.1 looks like for the type of localizations we are
interested:

1. If S = {fn | n ∈ Z} and T = {gn | n ∈ Z}, then

Rfg ∼= (Rg)f/1 ∼= (Rf )g/1.

2. Let p ⊂ q be two prime ideals with S = R \q and T = R \p. Since S ⊆ T , we have ST = T . Furthermore,
directly from the definitions we have U = ℓS(R \ p) = Rq \ pRq so we can conclude:

Rp
∼= (Rq)pRq

Proposition A.3. Let R be a noetherian local domain of dimension 1 with (unique) maximal ideal m and
residue field k = R/m. Then the following are equivalent:
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(i) R is regular, i.e. dimR = dimk(m/m
2),

(ii) R is a PID,

(iii) R is a DVR.

Proof. We only prove that (i) ⇐⇒ (ii) since this is the part we will use in these notes. We refer to Proposition
9.2 of [AM94] for the more complete version of this Proposition and its proof.

(i =⇒ ii) Since R is regular of dimension 1, then dimk(m/m
2) = 1. Let x ∈ m be such that x+m2 generates m/m2 as

a k-vector space. Since R is noetherian, m is a finitely generated R-module so we may apply Nakayama’s
Lemma to lift the generator; that means m = (x) and m is principal.

Let a ⊂ R be an ideal and consider its radical

√
a := {a ∈ R | ae ∈ a, e > 0}

of a. Since R is noetherian,
√
a is finitely generated, say by a1, . . . , an; choose ei > 0 such that aeii ∈ a. If

we write e := e1 + · · ·+ en, then (
√
a)e is generated by e-fold products of the generators, i.e.

(
√
a)e = ⟨ar11 · · · arnn | r1 + · · ·+ rn = e⟩ .

Now take any generator ar11 · · · arnn of (
√
a)e. By the choice of e, we necessarily have rj ≥ ej for some

j = 1, . . . , n. Thus a
rj
j = a

ej
j a

rj−ej
j ∈ a and hence ar11 · · · arnn ∈ a. This proves that (

√
a)e ⊆ a.

Next we compute the radical. Since
√
a is equal to be the intersection of all prime ideals of R containing

a, then
√
a = m. Indeed, if p ⊆ m is a nonzero prime ideal of R, then dimR = 1 implies that p = m. This

claim together with the above tells us that

∃m > 0 such that mm ⊆ a ⊆ m.

This implies that there exists an exponent 0 < r ≤ m for which a ⊆ mr but a ̸⊆ mr+1. Thus, if
a ∈ a ⊆ mr = (x)r = (xr), there exists b ∈ R such that a = bxr. Since a ̸∈ mr+1 = (xr+1), then
b ̸∈ (x) = m and is thus a unit since R is local. Thus xr = b−1a ∈ a and hence a = (xr). We have shown
that every ideal of R is principal and of the form a = mr for some r > 0.

(ii =⇒ i) Since R is a PID then m = (x) for some x ∈ R. If m/m2 = 0 then m = m · m so that Nakayam’s Lemma
implies that m = 0. However, this implies that R is a field which contradicts the fact that dimR = 1.
Thus m/m2 ̸= 0 and in particular dimk(m/m

2) ≥ 1.

Next, let {x1 + m2, . . . , xn + m2} be a basis for m/m2. By Nakayama’s Lemma again, we have m =
(x1, . . . , xn) so that xi = rix

ei for some ri ∈ R and ei ≥ 1. If ei > 1, then xi ∈ mei ⊆ m2 and thus we
would have xi + m2 = 0 which contradicts the fact that it is an element of a basis. Thus ei = 1 and
xi = rix for all i = 1, . . . , n. Similarly we must have that ri ̸∈ m. This means that ri+m ∈ k is invertible
and hence

{(r1 +m)−1(x1 +m2), . . . , (rn +m)−1(xn +m2)} = {x+m2, . . . , x+m2︸ ︷︷ ︸
n times

}

is also a basis for m/m2. This is only possible if n = 1. Therefore dimk(m/m
2) = 1 as required.

A.1.2 Canonical Isomorphisms

Lemma A.4. (Exercise 10 of Chapter II of [AM94]) Let R be a ring and I ⊂ R an ideal contained in the
Jacobson radical of R. Let M be an R-module, N be a finitely generated R-module and u : M → N an
R-module homomorphism. If the induced map u :M/IM → N/IN is surjective, then u is surjective.

Proof. Since N is finitely generated, then N = ⟨n1, . . . , nt⟩ for some ni ∈ N . In particular N/IN is finitely
generated by ni + IN . Since u is surjective, for each i = 1, . . . , t there exists mi ∈M such that u(mi) +mM =
ni + IN . Since I is contained in the Jacobson radical of R, then Nakayama’s Lemma allows us to lift the
generating set {u(m1)+ IN, . . . , u(mt)+ IN} of N/IN to a generating set {u(m1), . . . , u(mt)} of N . Therefore
N = ⟨u(m1), . . . , u(mt)⟩ ⊆ im(u) and thus u is surjective.

Proposition A.5. Let R be a local ring with maximal ideal m and residue field k. Let M and N be finitely
generated R-modules with N free and let φ : M → N be an R-linear map. Suppose that the induced map
φ :M/mM → N/mN is an isomorphism. Then φ itself is an isomorphism.
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Proof. By the previous lemma, we only need to show that φ is injective and to do this, we will construct a left
inverse.

Suppose that N is freely generated by {n1, . . . , ns} ⊂ N and let m1, . . . ,ms ∈M such that

mi +mM = φ−1(ni +mN).

Notice that this is equivalent to φ(mi) +mN = ni +mN . Since N is free, we obtain an R-linear map

φ′ : N −→M defined by ni 7→ mi.

We claim that φ′ ◦ φ = idM/mM . To show this, let m ∈ M and write φ(m) in terms of the basis of N as
φ(m) =

∑
rini. Notice that by construction we have:

φ
(
(m−

∑
rimi) +mM

)
=
(
φ(m)−

∑
riφ(mi)

)
+mN =

(
φ(m)−

∑
rini

)
+mN = 0,

so that m+mM =
∑
rimi +mM since φ is an isomorphism. Thus

φ′(φ(m+mM)) = φ′
(∑

rini +mN
)
=
∑

rimi +mM = m+mM,

as claimed.
Next, we define

ψ :M −→M with ψ = φ′ ◦ φ.

The previous lemma applied to u = ψ implies that ψ is surjective since ψ is surjective. This means that if we
considerM as an R[X]-module via ψ, i.e. X ·m = ψ(m), thenM = (X)M so that the Cayley-Hamilton theorem
tells us that there is a polynomial f(X) ∈ R[x] with f(X) ≡ 1 (mod X) such that f(X) ·M = 0 (see [AM94,
Corollary 2.5]). In particular, there is another polynomial g(X) ∈ R[X] such that f(X) = 1−Xg(X), and thus
for every m ∈M we have

g(ψ)ψ(m) = g(X)X ·m = (1− f(X)) ·m = m− f(X) ·m = m,

that is g(ψ)ψ = idM , or equivalently (g(ψ)φ′) ◦ φ = idM . This shows that φ has a left inverse as required.

Proposition A.6. Let S be a commutative ring. Let A, B and C be S-modules with A finitely generated and
projective. Then the map

α : HomS(B,C)⊗S A −→ HomS

(
HomS(A,B), C

)
defined by α(f ⊗ a)(g) = f(g(a))

is a natural S-module isomorphism.

Proposition A.7. Let R be a commutative unital ring and R′ a commutative unital R-algebra. Let M be an
R-module. Then there is an R′-algebra homomorphism

β : R′ ⊗R EndR-mod(M) −→ EndR′-mod(R
′ ⊗RM),

that satisfies
β(1⊗ φ) = idR′ ⊗ φ (A.3)

for all φ ∈ EndR-mod(M). In fact, β, viewed as an R′-module homomorphism, is unique among all R′-module
homomorphisms R′ ⊗R EndR-mod(M) → EndR′-mod(R

′ ⊗RM) that satisfy (A.3). Furthermore, if M is a free
R-module of finite rank, then β is an isomorphism.

Proof. First we define β. Let r ⊗ φ be a simple tensor in R′ ⊗R EndR-mod(M). Next we define the map

ψr⊗φ : R′ ×M −→ R′ ⊗RM with (x,m) 7→ rx⊗ φ(m)

It is straightforward to check that ψr⊗φ is R-bilinear (since R is commutative and φ is R-linear) so the universal
property of the tensor product gives us a (unique) R-linear map

ψr⊗φ : R′ ⊗RM −→ R′ ⊗RM with x⊗m 7→ rx⊗ φ(m).

In fact, ψr⊗φ is an R′-module endomorphism of R′ ⊗RM . Indeed, if r′ ∈ R′ and x⊗m ∈ R′ ⊗RM is a simple
tensor, then

ψr⊗φ
(
r′(x⊗m)

)
= ψr⊗φ(r

′x⊗m) = rr′x⊗ φ(m) = r′rx⊗ φ(m) = r′(rx⊗ φ(m)) = r′ψr⊗φ(x,m).
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Hence ψr⊗φ ∈ EndR-mod(R
′ ⊗RM) and we get a map,

β : R′ ⊗R EndR-mod(M) −→ EndR′-mod(R
′ ⊗RM) defined by r ⊗ φ 7→ ψr⊗φ (A.4)

which we extend to an R′-linear map.
Notice that β is actually an R′-algebra homomorphism. First of all, β preserves the mulitplicative identities

since
β(1⊗ idM )(x⊗m) = ψ1⊗idM

(x⊗m) = 1 · x⊗ idM (m) = x⊗m = idR′⊗M (x⊗m)

so β(1⊗ idM ) = idR′⊗M . And second of all, β is multiplicative since

β
(
(r ⊗ φ) · (r′ ⊗ φ′)

)
= β(rr′ ⊗ φφ′) = ψrr′⊗φφ′

and if x⊗m ∈ R′ ⊗RM is an arbitrary simple tensor, then

ψr⊗φ
(
ψr′⊗φ′(x⊗m)

)
= ψr⊗φ

(
r′x⊗ φ′(m)

)
= rr′x⊗ φ(φ′(m)) = ψrr′⊗φφ′(x⊗m),

∴ β
(
(r ⊗ φ) · (r′ ⊗ φ′)

)
= ψrr′⊗φφ′ = ψr⊗φψr′⊗φ′ = β(r ⊗ φ)β(r′ ⊗ φ′).

Next we show that β is unique among R′-module homomorphisms R′⊗REndR-mod(M) −→ EndR′-mod(R
′⊗R

M) satisfying A.3. To see this, let β′ be one such R′-module homomorphism. If r ⊗ φ is any simple tensor in
the domain, then

β′(r ⊗ φ) = β′(r(1⊗ φ)
)
= rβ′(1⊗ φ) = r(idR′ ⊗ φ) = rβ(1⊗ φ) = β(r ⊗ φ).

Hence β′ = β and we conclude that β is the unique R′-linear map that satisfies (A.3).
For the last part of the proof, we assume that M is a free R-module, say M ∼= RN for some N ∈ N. We

will exhibit another R′-module homomorphism R′ ⊗R EndR-mod(M) → EndR′-mod(R
′ ⊗R M) which we will

know to be an isomorphism (since it will arise from the functorial properties of the Hom and tensor functors
HomR-mod(−,M) and − ⊗R M) and then show that it satisfies (A.3). By the uniqueness property we showed
above, we will have that this new isomorphism is in fact equal to β and thus β is an isomorphism as required.

To this end, let {m1, . . . ,mN} be a free generating set of M as an R-module. With this choice of basis, we
have an R-linear isomorphism

Φ : EndR(M) −→ MatN×N (R)

which associates an endomorphism φ : M → M with its associated matrix. On the other hand, R′ ⊗R M is
isomorphic to R′ ⊗R RN ∼= (R′ ⊗R R)N ∼= (R′)N via the isomorphism M ∼= RN given by our choice of basis
above. More precisely, given an arbitrary m ∈M , we may write m =

∑
rimi uniquely, so the composition

R′ ⊗RM R′ ⊗R RN (R′ ⊗R R)N (R′)N

r′ ⊗
(∑

rimi

)
r′ ⊗ (r1, . . . , rN ) (r′ ⊗ r1, . . . , r

′ ⊗ rN ) (r′r1, . . . , r
′rN )

∼ ∼ ∼

is an R-module isomorphism which is clearly also R′-linear. Hence, the canonical R′-basis {e1, . . . , eN} of (R′)N

(where e1 = (1, 0, . . . , 0), etc.) pulls back to the R′-basis {1⊗m1, . . . , 1⊗mN} of R′ ⊗RM . Thus as above, we
obtain an R′-module isomorphism

Ψ : EndR′(R′ ⊗RM) −→ MatN×N (R′)

that associates an endomorphism ψ : R′ ⊗R M → R′ ⊗R M to its associated matrix with respect to the basis
{1⊗m1, . . . , 1⊗mN} of R′ ⊗RM .

Now we can put these two isomorphisms together. First we tensor Φ with R′. Since tensoring on the left by
R′ over R is a functor, then we get the R′-module isomorphism

idR′ ⊗ Φ : R′ ⊗R EndR(M)
∼−→ R′ ⊗R MatN×N (R).

Next, we know that MatN×N (R) ∼= RN
2

so we have canonical R′-module isomorphisms

R′ ⊗R MatN×N (R) R′ ⊗R RN
2

(R′ ⊗R R)N
2

(R′)N
2

MatN×N (R′)

r′ ⊗ (rij) r′ ⊗ (r11, . . . , rNN ) (r′ ⊗ r11, . . . , r
′ ⊗ rNN ) (r′r11, . . . , r

′rNN ) (r′rij)

∼ ∼ ∼ ∼

If we call the composition of these canonical isomorphisms

Ξ : R′ ⊗R MatN×N (R)
∼−→ MatN×N (R′) defined by r′ ⊗A 7→ r′A,
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Then putting everything together gives us an R′-module isomorphism

R′ ⊗R EndR(M) R′ ⊗R MatN×N (R) MatN×N (R′) EndR′(R′ ⊗RM)

r′ ⊗ φ r′ ⊗ Φ(φ) r′Φ(φ) ψ

idR′⊗Φ Ξ Ψ−1

where the endomorphism ψ : R′ ⊗R M → R′ ⊗R M is defined by the matrix r′Φ(φ). Finally, under this map,
1⊗φ gets mapped to multiplication by the matrix 1·Φ(φ) = Φ(φ) which is the same matrix as the one associated
to φ just viewed as a matrix with entries in R′ (instead of R). Thus 1⊗φ 7→ idR′ ⊗φ as required. This finishes
the proof.

Remark. This result is a particular case of a more general result that states that ifM andN are any R-modules,
there is a unique R′-module homomorphism

R′ ⊗HomR(M,N) −→ HomR′(R′ ⊗RM,R′ ⊗R N),

that satisfies 1 ⊗ φ 7→ idR′ ⊗ φ. Furthermore, if R′ is a flat R-module and M is finitely presented, then this
map is an isomorphism (see Proposition 2.10 of [Eis95]).

Corollary A.8. Let M be a finitely generated R-module where R is a neotherian integral domain with fraction
field K. Then there is a canonical K-algebra isomorphism:

K ⊗R EndR(M)
∼−→ EndK(K ⊗RM)

Proof. Since K is the localization of R, it is a flat R-algebra. Since M is finitely generated, it admits an
R-module epimorphism RN ↠ M for some N ∈ N. Since RN is a finitely generated module over a noetherian
ring, then it is itself a noetherian R-module and hence the kernel of RN ↠M is finitely generated. Thus M is
finitely presented and we may apply Proposition A.7 to M = N and R′ = K.

Proposition A.9. Let R be a commutative ring and M an R-module. The following are equivalent:

(i) M is locally free of finite rank,

(ii) M is finitely generated and projective,

(iii) M is finitely presented and Mp is a free Rp-module for every prime ideal p ⊂ R,

(iv) M is finitely presented and Mm is a free Rm-module for every maximal ideal m ⊂ R.

Remark A.10. If R is noetherian, then M is finitely generated if and only if M is finitely presented. Indeed,
M is finitely generated if, by definition, there is a surjective R-module homomorphism Rn ↠ M for some
n > 0. Since Rn is finitely generated and R is noetherian, it is a noetherian R-module and hence the kernel
N of Rn ↠M is finitely generated so it admits a surjective map R-module homomorphism Rm ↠ N for some
m > 0. Therefore we obtain an exact sequence Rm → Rn →M → 0, i.e. M is finitely presented.

Proof. (of Proposition A.9)

(i =⇒ ii) Assume that M is locally free, i.e. there exists an open cover of basic open sets of SpecR, say SpecR =
D(f1) ∪ · · · ∪ D(fn) such that each localization Mfi = M ⊗R Rfi is a free Rfi-module of rank Ni > 0.
Notice that we may take the cover to be finite since SpecR is (quasi) compact.

Next, take N := max{N1, . . . , Nn} to be the maximum of these ranks. Then for each i = 1, . . . , n,

Fi :=Mfi ⊕RN−Ni

fi

is a free Rfi-module of rank N . Hence

F :=

n⊕
i=1

Fi is a free S :=

n⊕
i=1

Rfi-module.

Thus

M ⊗R S ∼=
n⊕
i=1

(M ⊗R Rfi) ∼=
n⊕
i=1

Mfi ↪→
n⊕
i=1

(Mfi ⊕RN−Ni

fi
) = F

implies that M ⊗R S is a direct summand of F , a free S-module of finite rank, and thus is a finitely
generated and projective S-module. The key property of S that we will leverage to take these desired
properties to M , instead of M ⊗R S, is that S is a faithfully flat R-algebra. Indeed, localizations are exact
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functors so Rfi is a faithfully flat R-algebra and since tensoring over R commutes with direct sums, then
S is also faithfully flat.

We first turn out attention to the finite generation of M . Since M ⊗R S is finitely generated we may
choose a generating set {x1, . . . , xt}. Each generator xi can be written as

xi =

ti∑
j=1

mij ⊗ sij =

ti∑
j=1

sij(mij ⊗ 1)

so {mij ⊗ 1 | i = 1, . . . , t, j = 1, . . . , ti} is also a finite generating set of M ⊗R S. Thus without loss of
generality, we may assume that each xi is already of the form mi ⊗ 1. This gives us

Rt −→M defined on the canonical basis as ei 7→ mi.

Tensoring this map with S yields

Rt ⊗R S ∼= (R⊗R S)t ∼= St −→M ⊗R S

which is surjective since {m1 ⊗ 1, . . . ,mt ⊗ 1} generates M ⊗R S. That is, we have:

Rt M 0

St M ⊗R S 0

−⊗RS −⊗RS

Since the bottom row is exact and S is faithfully flat, then the top row is exact and we conclude that M
is finitely generated.

Now we turn to the projectiveness of M , i.e. we need to show that the functor HomR(M,−) is right
exact (we already know that the hom functor is left exact), i.e. given any exact sequence

A B 0α

then
HomR(M,A) HomR(M,B) 0

α∗

is exact. Since S is faithfully flat, the exactness of the above sequence is equivalent to the exactness of

S ⊗R HomR(M,A) S ⊗R HomR(M,B) 0.
idS⊗α∗

We can obtain this sequence from A → B → 0 by applying, in order, the functors functors − ⊗R S and
HomS(M ⊗R S,−) followed by the natural isomorphism of Proposition A.7:

A B 0

A⊗R S B ⊗R S 0

HomS(M ⊗R S,A⊗R S) HomS(M ⊗R S,B ⊗R S) 0

S ⊗R HomR(M,A) S ⊗R HomR(M,B) 0.

∼ ∼

Since the top row is exact and both − ⊗R S and HomS(M ⊗R S,−) are right exact functors, the latter
being right exact because M ⊗R S is projective, the bottom row is also exact as required.

(ii =⇒ iii) Lets suppose that M is finitely generated and projective. The first assumption tells us that there is an
epimorphism Rn →M for some n > 0. So if we write K = ker ν, we have the exact sequence

0 K Rn M 0ι (A.5)

Since M is projective, this exact sequence is right-split by applying the definition of projective to the
diagram:

M

Rn M 0

idM

ν

23



Thus (A.5) is left-split, i.e. there is an R-module homomorphism σ : Rn → K such that σι = idK , i.e. σ
has a right inverse and is thus surjective. This means that K admits an epimorphism Rn ↠ K is is thus
finitely generated. This proves that M is finitely presented.

(iii =⇒ iv) This is trivial.

(iv =⇒ i) For each maximal ideal m ⊂ R, we have that Mm is a free Rm-module. Since M is finitely presented, we
may localize its finite presentation to get

Rm Rn M 0

Rm ⊗R Rm Rn ⊗R Rm M ⊗R Rm 0

Rmm Rnm Mm 0.

−⊗RRm −⊗RRm −⊗RRm

∼ ∼ ∼

(A.6)

The bottom row is exact since localization is an exact functor and the isomorphisms between the second
and third row are canonical. Hence Mm is finitely presented and is thus a free Rm-module of finite rank.

Let {m1/s1, . . . ,mk/sk} be a free generating set with mi ∈ M and si ∈ R \ m. Notice that
{m1/1, . . . ,mk/1} is also a free generating set. Indeed, ifm/s ∈M , then there exist u1/t1, . . . , uk/tk ∈Mm

such that

m

s
=

k∑
i=1

ui
ti

mi

si
=

k∑
i=1

ui
tisi

mi

1

so that {m1/1, . . . ,mk/1} generates and it is linearly independt since

0 =

k∑
i=1

ui
ti

mi

1
=

k∑
i=1

uisi
ti

mi

si
=⇒ 0 =

uisi
ti

=⇒ ui
ti

because ai ∈ R×
m.

Next, with the free generating set {m1/1, . . . ,mk/1} we have the R-module homomorphism

φ : Rk −→M defined on the canonical basis by ei 7→ mi.

If we write K := kerφ and N :=M/φ(Rk) for the kernel and cokernel of φ respectively, we have the exact
sequence

0 K Rk M N 0.
φ

(A.7)

Similarly as in (A.6), we obtain the exact sequence

0 Km Rkm Mm Nm 0.
φm

(A.8)

where the localized map φm = φ⊗ idRm
is defined as on the canonical basis by

φm(ei/1) = (φ⊗ idRm
)(ei ⊗ 1) = mi ⊗ 1

and hence maps the canonical basis onto our free generating set for Mm. Thus φm is an isomorphism and
in particular, the terms surrounding it in the exact sequence (A.6) are zero, i.e. Km = Nm = 0.

Since N is a homomorphic image of a finitely generated (in fact finitely presented) R-module, it is
itself finitely generated; let {n1, . . . , nl} be a generating set. Since Nm = 0, then n1/1 = 0 in Nm, that
is, there exists an gi ∈ R \ m such that gini = 0. If we set g := g1 · · · gl, then g ∈ R \ m since m is prime
and gni = 0 for all i = 1, . . . , l. This implies that gN = 0 since it annihilates its generators. For the same
reasons, the localized module Ng is zero.

We would also like to find some h ∈ R \ m for which Kh = 0, however, we cannot immediately
use the same argument we used for N since it is not obvious that K is finitely generated because the
definition of being finitely presented only states that there exists a presentation whose kernel of relations
is finitely generated, not that every presentation has finitely generated kernel. However, this is true; For
the moment, we assume that K is finitely generated and we postpone the proof of this fact until the end.

Assuming that K is finitely generated, the same argument we used for N yields an h ∈ R \ m such
that Kh = 0. By Proposition A.1 (or more precisely, Remark A.2) we have that

Kf
∼= K ⊗R Rf ∼= K ⊗R (Rh ⊗Rh

(Rh)g/1) ∼= (K ⊗R Rh)⊗Rh
(Rh)g/1 ∼= Kh ⊗Rg

Rf = 0.
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Swapping K with N and h with g in the above computation gives Nf = 0. Thus if we localize the exact
sequence (A.7) with respect to {fe | n ∈ Z} we obtain the exact sequence

0 Kf︸︷︷︸
=0

Rkf Mf Nf︸︷︷︸
=0

0.
φf

and thus Mf
∼= Rkf .

In conclusion, we have found, for every maximal ideal m ⊂ R, an element f ∈ R \ m such that Mf

is a free Rf -module. Thus, for every point p in SpecR, we can find a basic open neighborhood D(fp)
that contains (a point m contained in the closure of the point) p. Since SpecR is (quasi) compact, we
may take finitely many f1, . . . , fl ∈ R such that SpecR = D(f1) ∪ · · · ∪D(fl) and such that Mfi is a free
Rfi-module. That is M is locally free as required.

The only thing left to show is that K is finitely generated. To do this we localize the exact sequence
in (A.7) with respect to the multiplicative subset {ge | e ∈ Z}, to obtain the short exact sequence

0 Kg Rkg Mg Ng = 0.
φg

The same argument we used to show that Mm is finitely presented applies for Mg. In fact, we get an
analogous exact sequence to the bottom row of (A.6) which we attach the one above as follows:

Rmg Rng Mg 0

0 Kg Rkg Mg 0,

ξ ψ

ι φg

(A.9)

where we have now labeled the previously unamed arrows.

Since Rng is a free Rg-module, it is projective and hence by definition the map ψ : Rng → M factors

through φg, i.e. there is a map η : Rng → Rkg that makes the following diagram commute:

Rng

Rkg Mg 0

η
ψ

φg

Now, observe that φgηξ = ψξ = 0 since the top row of (A.9) is exact. This shows that the image of ηξ
is contained in kerφg = im(ι). Thus, since Rmg is free and hence projective, the map ηξ factors through
the surjective map Kg → ι(Kg), i.e. there is a map ρ : Rmg → Kg such that makes the following diagram
commute:

Rmg

Kg ι(Kg) 0

ρ
ηξ

ι

Thus we can fill out the diagram in (A.9) with the the maps η and ρ to get the diagram

Rmg Rng Mg 0

0 Kg Rkg Mg

ξ

ρ

ψ

η idM

ι φg

which commutes by the constructions of η and ρ. We can now apply the Snake Lemma (see for example [?])
which states that there is a long exact sequence

ker ρ ker η ker idM = 0 cokerρ cokerη cokerid = 0 0

and in particular cokerρ ∼= cokerη. Since cokerη is the homomorphic image of a finitely generated module,
namely Rkg , it is finitely generated, and hence cokerρ is finitely generated as well. Furthermore, imρ is
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also finitely generated since it is the homomorphic image of Rmg . Thus we can sandwhich Kg into a short
exact sequence

0 im(ρ) Kg cokerρ 0

where its neighbors are finitely generated. This implies that Kg is finitely generated. Indeed, choosing
finite set in Kg whose image in cokerρ generates, together with a finite generating set of im(ρ) ⊆ Kg yields
a finite generating set for Kg.

Proposition A.11. Let R be a commutative ring, A and R-algebra and M a left A⊗RAop-algebra. Then there
is a natural R-module isomorphism.

HomA⊗RAop(A,M)
∼−→ ZM (A) = {m ∈M | a ·m = m · a, ∀a ∈ A} defined by f 7→ f(1A).

A.2 Sheaves of OX-modules

Let X = (X,OX) be a scheme and F be a coherent sheaf. If x ∈ X a point, and Fx the stalk of F at x. Then

Fx is naturally an OX,x-module.

This module structure is defined as follows: if [s] ∈ Fx is represented by s ∈ F(U) and [r] ∈ OX,x is represented
by r ∈ OX(V ) for some other open neighborhoods U and V of x, then we define

[r] · [s] := [r|W s|W ] where W ⊆ U ∩ V is a smaller open neighborhood of x.

This is possible since s|W lies in F(W ) which is itself an OX(W )-module and thus can be multiplied by r|W ∈
OX(W ).

Proposition A.12. Let F and G be OX-modules and x ∈ X. Then:

(i) (F ⊗OX
G)x ∼= Fx ⊗OX,x

Gx,

(ii) If F is coherent, then
(
HomOX

(F,G)
)
x
∼= HomOX,x

(Fx,Gx).

Proof. Since the stalks of presheaves and their sheafifications are the same, then we may work with the presheaf
U 7→ F(U)⊗OX(U) G(U).

(i) By definition of the stalk of a presheaf, we have

Fx ⊗OX,x
Gx =

(
lim
U∋x

F(U)

)
⊗limU∋X OX(U)

(
lim
U∋x

G(U)

)
∼= lim
U∋x

(
F(U)⊗OX(U) G(U)

) ∼= (F ⊗OX
G)x ,

where the first isomorphism is natural and follows from the universal properties of the direct limit and
the tensor product (see Lemma 11.4 of [Cut18]).

(ii) For simplicity, we write H := HomOX
(F,G). Since F is coherent, there exists an open neighborhood U of

x such that F|U ∼= M̃ where M is a finitely generated OX(U)-module. Since stalks don’t change when
restricting to U , then the statement follows from the natural isomorphism

HomS−1OX(U)(S
−1F(U), S−1G(U)) ∼= S−1

(
HomOX(U)(F(U),G(U))

)
where S ⊂ OX(U) is any multiplicatively closed set (see Proposition 2.10 of [Eis95]).

Corollary A.13. Let (f, f#) : (Y,OY ) → (X,OX) be a morphism of ringed spaces and A an OX-module.
Then by definition, for any y ∈ Y there is a local homormophism f#y : OX,f(y) → OY,y which makes the stalk
Af(y) into an OX,f(y)-module. Then

(f∗A)y ∼= Af(y) ⊗OX,f(y)
OY,y.

Proposition A.14. (Exercise II.5.1 of [Har77]) Let (X,OX) be a ringed space and A a locally free OX-module
of finite rank. If we denote the dual of A as

Ǎ := HomOX
(A,OX).

Then the following are true:
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(i) ˇ̌A ∼= A,

(ii) If F is an OX-module, then
HomOX

(A,F) ∼= Ǎ ⊗OX
F.

(iii) If F and G are OX-modules, then

HomOX
(A⊗OX

F,G) ∼= HomOX
(A,HomOX

(F,G))

(iv) (Projection Formula) If f : (Y,OY ) → (X,OX) is a morphism of ringed spaces and F is an OY -module,
then there is a natural isomorphism

f∗(F ⊗OY
f∗A) ∼= f∗F ⊗OX

A.

Corollary A.15. Let f : Y → X be a morphism of noetherian schemes and let A be a locally free OX-module.
Then

HomOY
(f∗A, f∗A) ∼= f∗HomOX

(A,A)

Proof. We will show that HomOY
(f∗A, f∗A) and f∗HomOX

(A,A) represent the same functor and hence
Yoneda’s Lemma would imply that these are naturally isomorphic. Let G be any OY -module and consider
the following chain of isomorphisms:

Hom
(
HomOY

(f∗A, f∗A),G
) ∼= Hom

(
f∗A⊗OY

f∗A,G
)

by Proposition A.14.(ii)

∼= Hom
(
f∗A,HomOY

(f∗A,G)
)

by the Hom-Tensor adjunction

∼= Hom

(
f∗A, f∗A ⊗OY

G

)
by Proposition A.14.(ii)

∼= Hom(f∗A, f∗A⊗OY
G) by Proposition A.14.(i)

∼= Hom(A, f∗(f∗A⊗OY
G)) by the f∗-f

∗ adjunction
∼= Hom(A,A⊗OX

f∗G) by the Projection formula

∼= Hom
(
HomOX

(A,A), f∗G
)

by the Hom-Tensor adjunction

∼= Hom
(
f∗HomOX

(A,A),G
)

by the f∗-f
∗ adjunction

This proves that HomOY
(f∗A, f∗A) and f∗HomOX

(A,A) represent the same functor so they are isomorphic as
required.

Proposition A.16. (Exercise II.5.7 of [Har77]) Let X be a neotherian scheme and F a coherent sheaf.

(i) Let x ∈ X. If the stalk Fx is a free OX,x-module. There exists an open neighborhood U of x for which
F|U is a free OX-module.

(ii) F is a locally free OX-module if and only if Fx is a free OX,x-module for all x ∈ X.

Proof.

(i) Let x ∈ X. Since F is coherent, there exists an open affine neighborhood V = SpecA of x such that

F|V ∼= M̃ where M is a finitely generated A-module; let m1, . . . ,mn ∈ M generate M as an A-module.
The point x corresponds to a prime ideal p ⊂ A so OX,x

∼= Ap and Fx ∼=Mp as Ap-modules.

Under these identifications, are assumption on Fx says that Mp is a free Ap-module; let {z1, . . . , zd}
be a free generating set of Mp. Each element can be written in the form

zi =
ai
si
z′i

where ai ∈ A, si ∈ A \ p and z′i ∈ M ; set s := s1 · · · sd. For each generator mi of M as an A-module,
consider their images ℓ(mi) ∈ Mp under the canonical localization map ℓ : M → Mp. Then for each of
these, we may write

ℓ(mk) =

d∑
i=1

ak,i
uk,i

zi with ak,i ∈ A, uk,i ∈ A \ p

If we define

u =

n∏
k=1

d∏
i=1

uk,i

27



then u ̸∈ p since uk,i ̸∈ p for all k and i. Therefore f := su ∈ A \ p and we get a canonical map Af → Ap.

This means we can define:

ψ : Adf −→Mf with

(
b1
f j1

, . . . ,
bd
f jd

)
7→

d∑
i=1

bi
f ji

zi.

This map is clearly Af -linear. It is also injective since {z1, . . . , zd} is a free generating set. Finally, to
show surjectivity, let (a/fN )m ∈ Mf be arbitrary. Since {m1, . . . ,mn} generates M over A, there exists
c1, . . . , cn ∈ A such that m =

∑
ckmk. Thus

a

fN
m =

a

fN

n∑
k=1

ck

(
d∑
i=1

ak,i
uk,i

zi

)
=

d∑
i=1

(
n∑
k=1

ack
fNuk,i

)
zj .

Since, uk,i | f by construction, then f = uk,iu
′
k,i for some u′k,i ∈ A so that:

ack
fNuk,i

=
acku

′
k,i

fN+1
∈ Af .

Hence,

ψ

(
n∑
k=1

acku
′
k,1

fN+1
, . . . ,

n∑
k=1

acku
′
k,d

fN+1

)
=

a

fN
m,

and ψ is surjective.

Thus Mf is a free Af -module. Going back to F, we can conclude that F(D(f)) ∼= Mf is a free
OX(D(f)) ∼= Af module where D(f) is the basic open neighborhood of x defined by f ∈ A. Since already

F|V ∼= M̃ and D(F ) ⊆ V , then F|D(f) is a free OX -module as required.

(ii) The “only if” part is simply the previous item. Lets suppose that F is a locally free OX -module and let
x ∈ X. By assumption, there exists an open neighborhood U of x such that F|U is a free OX |U -module.
We will show that Fx is a free OX,x-module.

To see this, let [s] ∈ Fx be any element represented by some section s ∈ F(V ) where V is an open
neighborhood of x. Since [s] = [s|U∩V ], we may assume that V ⊆ U . By assumption, F(V ) is a free
OX(V )-module; let s1, . . . , sn ∈ F(V ) be a free generating set. Then we claim that [s1], . . . , [sn] ∈ Fx is a
free generating set for Fx over OX,x.

Now, since s ∈ F(V ), there exist a1, . . . , an ∈ OX(V ) such that s =
∑
aisi and thus

[s] =
n∑
i=1

[ai][si].

Now, if [s] =
∑
bi[si] is any other linear combination, we would have

[0] =

n∑
i=1

[(ai − bi)si]

which means that there exists an open neighborhood W of x such that W ⊆ V and

0|W =

(
n∑
i=1

(ai − bi)si

)∣∣∣∣∣
W

Corollary A.17. Let F be a coherent locally free OX-module. Then

EndOX
(F)⊗OX

EndOX
(F) ∼= EndOX

(F ⊗OX
F).

28



Bibliography

[AM94] M.F. Atiyah and I.G. MacDonald. Introduction To Commutative Algebra. Addison-Wesley series in
mathematics. Avalon Publishing, 1994.

[Cut18] S.D. Cutkosky. Introduction to Algebraic Geometry. American Mathematical Society, 2018.

[Eis95] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Springer, 1995.

[For17] T.J. Ford. Separable Algebras. Graduate Studies in Mathematics. American Mathematical Society,
2017.

[Har77] R Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer New York, 1977.

[Kna07] A. Knapp. Advanced Algebra. Birkhäuser, 2007.

29


